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Guiding Drug Optimisation Using Deep Learning 
Imputation and Compound Generation

The use of machine learning (ML) 
methods is now commonplace in many 
disciplines and artificial intelligence 
(AI) is on the rise, promising better 
and smarter solutions to ‘all your 
problems’. However, despite the hype, 
there is increasing evidence we have 
entered the next ‘AI winter’ or the 
so-called ‘trough of disillusionment’ in 
the ongoing hype cycle1. There is still 
a gap in understanding on the route 
from traditional and well-understood 
statistical modelling methods to the 
poorly-defined promises of AI, and 
exactly how the majority of researchers 
can cross that gap is not clear. 

Researchers in drug discovery are 
familiar with quantitative structure 
activity relationship (QSAR) model 
building methods. Many of these 
methods now employ forms of 
machine learning (ML), a sophisticated 
form of ‘fitting functions to data’. The 
question is how to leap forward from 
this well-known and comfortable ML 
space toward sophisticated AI tools, 
by which we mean: A connected set 
of ML components in an automated 
system which together produce a 
rich behaviour capable of solving 
complex tasks. The lesser known ‘AI’ 
is augmented intelligence, and there 
is no reason why a human cannot be 
part of the connected components 
in this sophisticated AI system. The 
combination of a human expert and 
superior tools has been found to be 
optimal as well as convenient2.
 

We will describe the outcomes and 
discoveries made by connecting: A 
state-of-the-art data imputation method 3, 
in this case using deep learning4,5; 
generative methods based on machine 
learning6 and evolutionary7 algorithms; 
optimisation processes for goal-seeking; 
and probabilistic scoring8, a form of 
multi-parameter optimisation (MPO) 9 

for guiding compound prioritisation 
decisions, without resorting to harsh 
filtering methods10. We illustrate this 
with an example application finding a 
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confidently active compound against a 
novel malaria target11, and outline our 
future vision for these methods. 

Method
The schematic for the ‘AI’ process 
used in this work is shown in Figure 1.  
Each block represents a component 
or process, colour-coded as either an  
input (data, or parameters), ML method, 
automated step (such as a script 
or advanced software process), or 
outputs, which amount to confident 
predictions of active compounds with an 
appropriate property profile and confident 
identification of missed opportunities. In 
general, humans will only have to interact 
with the inputs and outputs of the system, 
but this feedback is essential to get the 
best results out of the system, through 
augmentation of the AI with human 
expertise and vice versa.

Figure 1: Schematic of the augmented/AI process used to generate confident predictions for virtual 
compounds. Components are colour-coded as inputs (yellow), machine learning tools (purple), automated 

steps (green) and outputs (orange).

For most applications, the starting point 
is sparse and noisy raw experimental 
data for existing compounds and their 
chemical structures (Figure 1, top left) 3. 
For a typical drug discovery project, 
these data could be a combination of 
experimental assays for activities and 
absorption, distribution, metabolism and 
elimination (ADME) endpoints5. 

Data Preparation
First, we will follow the input data 
rightwards; the raw data are cleaned with 
automated routines and transformed into 
units that are more suitable for machine 
learning; for example, it is common to 
transform IC50 quantities to pIC50

5 (the 

negative log of the IC50 in Molar units). 
Molecular descriptors are also generated 
for the compound structures as input; for 
this work, descriptors were generated, 
including whole-molecule properties such 
as logP, MW, TPSA and SMARTS based 
fragment matches, but in principle any 
descriptors can be used at this step. 

Modelling
The next step is critical: the sparse 
and noisy data are imputed using a 
state-of-the-art deep learning method 
called Alchemite4, which has seen great 
success in heterogeneous datasets from 
real drug discovery projects5. Modern 
imputation methods offer clear benefits 
over a standard predictive approach3, 
they make better use of existing data, can 
handle sparse and noisy experimental 
results and provide robust uncertainty 
estimates for each missing value which 

is predicted3,5. From this point, in Figure 
1 we can immediately find high-potential 
compounds that are in the training set, but 
only have partially measured experimental 
data. We can also “confidently identify 
missed opportunities” as illustrated as 
an output in the schematic, which is a 
valuable positive outcome10. Examples 
of this could be incorrect or inconsistent 
experimental data in the inputs, which 
the deep imputation model can highlight 
that they lie outside of the expected range 
based on the error bars in the prediction, 
enabling them to be flagged for retesting.
When training this deep imputation 
model, we can also build a virtual model 3. 
This can make predictions for virtual 
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compounds, i.e. those that have not 
yet been synthesised, with greater 
accuracy than the best QSAR methods5, 
while simultaneously providing robust 
error bars. This virtual model forms the 
explorative basis for the AI allowing it 
to judge new compounds which are 
generated by two methods.

Compound Generation
Broadly speaking, there are two kinds 
of approach for compound generation, 
a bottom up and a top down approach:

Bottom up: Start from known chemistry 
and optimise outward to explore related 
compounds to search for those that are 
likely to satisfy project requirements 
(activity, selectivity, ADME, etc.). This 
method closely resembles a human-led 
drug discovery programme, starting from 
known hits and performing synthetically 
accessible variations around promising 
compounds, but can explore many more, 
diverse ideas in a shorter time than even 
an expert chemist12. In algorithmic terms, 
it can be slow to iteratively approach the 
goals, but the proposed chemistry will 
be familiar to project chemists and more 
likely to be synthesisable. In Figure 1, 
this is covered by the component ‘Nova™’, 
a module in StarDrop™, which uses 
advanced evolutionary algorithms to 
generate libraries of virtual compounds 
using realistic chemistry transformations 
from the medicinal chemistry literature7. 

Top down: This strategy attempts to  
generate descriptors for an ‘ideal 
compound’ which would be predicted to 
have the desired properties. The algorithm 
then generates a structure that matches 
these ideal descriptors. This method is an 
example of generative ML methods6 and 
is shown as ‘Generative ML’ in Figure 1. 
If the model predictions are accurate 
and a solution can be found, then the 
compound is likely to fulfil all of the project 
requirements. However, these methods 
often struggle to make synthetically 
accessible and drug-like compounds, and 
models without uncertainty estimates may 
give untrustworthy answers. The deep 
imputation method used in this work 
does provide uncertainty estimates, and 
these can be factored into the optimisation 
process. For our implementation, we solve 
for the ideal descriptor vector using a 
gradient descent optimisation layer over 
the Alchemite model. This layer varies the 
descriptor while minimising the difference 
in the predictions of the fixed model and 

the desired properties for a compound. 
The solved descriptors are cleaned and 
minor variations are made about the 
solution. These idea descriptor vectors 
are subsequently entered into a recurrent 
neural network (RNN) decoder6 which is 
trained to write out SMILES representations 
as compound suggestions which meet 
the input descriptor profile. In our case, 
the StarDrop descriptors were generated 
for the original dataset alongside a large 
portion of the ChEMBL database. This 
meant the RNN would generate SMILES 
similar to ChEMBL compounds which also 
match the target ideal descriptors used as 
input.

Probabilistic Scoring
An important step is to take all of the 
virtual compounds generated from both 
methods, along with their predictions 
and uncertainties, and apply MPO to 
prioritise them for further consideration. 
This is because a high-quality compound 
must exhibit not only activity but also an 
appropriate balance of physicochemical 
and ADME properties. In this AI application 
we use the probabilistic scoring method8 
in which an experienced user can define a 
profile of property criteria that represents 
the desired outcomes for an ideal 
compound. The algorithm estimates the 
likelihood of success of each compound, 
taking the uncertainties in the property 
values into account. This enables the 
generated compounds to be prioritised 
and the highest scoring shown to a human 
expert. The most promising can be taken 
forward for synthesis and experimental 
studies, or the expert can update the 
scoring profile or the design parameters 
for the Nova module to generate a new 
list of suggestions.

Application
A practical application of the AI process 
shown in Figure 1 was demonstrated for 
the Open Source Malaria (OSM) challenge, 
where various teams were invited to build 
predictive models for pfATP4 activity based 
on an open source dataset11. The data 
were sparse and noisy and compounds 
had been measured across different 

labs, protocols and sensitivities, and 
assays had been performed on different 
strains of drug-resistant Plasmodium 
falciparum (p. fal.) malaria parasites. 
The deep imputation model was able to 
impute this sparse and noisy matrix, while 
exploiting correlations between the strains, 
labs and associated measurements. The 
model also produced accurate error 
bars for both imputed results and virtual 
model predictions. A virtual library of 
approximately 100,000 structures was 
created through a combination of the two 
generative methods and the probabilistic 
scoring profile was defined to maximise 
activity in all assays, as well as increase 
solubility, while taking the confidence in 
each individual prediction into account.
Figure 2 shows the four compounds most 
likely to succeed, generated by the two 
approaches. Upon review, compound a) 
was considered to have a reactivity problem 
that may result in HF production and was 
discounted. In addition, compound c) was 
considered to be potentially unstable. 
The algorithms used could be improved 
to detect these high-level pitfalls and this 
reiterates the importance of the ‘expert 
chemist verification’ as depicted in Figure 1.

The compound most likely to succeed, 
the tert-butyl compound (b), had a 
predicted pIC50 value of 6.4 in the target 
assay. This was sent for experimental 
synthesis and, when tested, the experi-
mental pIC50 was 6.2, well within the 
uncertainties in both the experimental 
and predicted values. This activity met 
the project criteria for activity, which was 
a pIC50 > 6.

Of the novel compounds proposed 
by four organisations in the project, this 
was the only experimentally verified 
active, illustrating that methods which 
cannot reliably consider uncertainty often 
struggle to filter the successful actives 
from noisy predictions. Furthermore, 
the project chemists considered that the 
tert-butoxy group on compound b) gives 
new directions in the SAR and it is unlikely 
that this compound would have been 
considered by a human. These are exactly 

Figure 2: The most confident structures generated by the AI. Compounds a) and b) are from the bottom up 
Nova approach, compounds c) and d) were generated using the generative ML approach.
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compounds, i.e. those that have not 
yet been synthesised, with greater 
accuracy than the best QSAR methods5, 
while simultaneously providing robust 
error bars. This virtual model forms the 
explorative basis for the AI allowing it 
to judge new compounds which are 
generated by two methods.

Compound Generation
Broadly speaking, there are two kinds 
of approach for compound generation, 
a bottom up and a top down approach:

Bottom up: Start from known chemistry 
and optimise outward to explore related 
compounds to search for those that are 
likely to satisfy project requirements 
(activity, selectivity, ADME, etc.). This 
method closely resembles a human-led 
drug discovery programme, starting from 
known hits and performing synthetically 
accessible variations around promising 
compounds, but can explore many more, 
diverse ideas in a shorter time than even 
an expert chemist12. In algorithmic terms, 
it can be slow to iteratively approach the 
goals, but the proposed chemistry will 
be familiar to project chemists and more 
likely to be synthesisable. In Figure 1, 
this is covered by the component ‘Nova™’, 
a module in StarDrop™, which uses 
advanced evolutionary algorithms to 
generate libraries of virtual compounds 
using realistic chemistry transformations 
from the medicinal chemistry literature7. 

Top down: This strategy attempts to  
generate descriptors for an ‘ideal 
compound’ which would be predicted to 
have the desired properties. The algorithm 
then generates a structure that matches 
these ideal descriptors. This method is an 
example of generative ML methods6 and 
is shown as ‘Generative ML’ in Figure 1. 
If the model predictions are accurate 
and a solution can be found, then the 
compound is likely to fulfil all of the project 
requirements. However, these methods 
often struggle to make synthetically 
accessible and drug-like compounds, and 
models without uncertainty estimates may 
give untrustworthy answers. The deep 
imputation method used in this work 
does provide uncertainty estimates, and 
these can be factored into the optimisation 
process. For our implementation, we solve 
for the ideal descriptor vector using a 
gradient descent optimisation layer over 
the Alchemite model. This layer varies the 
descriptor while minimising the difference 
in the predictions of the fixed model and 

the desired properties for a compound. 
The solved descriptors are cleaned and 
minor variations are made about the 
solution. These idea descriptor vectors 
are subsequently entered into a recurrent 
neural network (RNN) decoder6 which is 
trained to write out SMILES representations 
as compound suggestions which meet 
the input descriptor profile. In our case, 
the StarDrop descriptors were generated 
for the original dataset alongside a large 
portion of the ChEMBL database. This 
meant the RNN would generate SMILES 
similar to ChEMBL compounds which also 
match the target ideal descriptors used as 
input.

Probabilistic Scoring
An important step is to take all of the 
virtual compounds generated from both 
methods, along with their predictions 
and uncertainties, and apply MPO to 
prioritise them for further consideration. 
This is because a high-quality compound 
must exhibit not only activity but also an 
appropriate balance of physicochemical 
and ADME properties. In this AI application 
we use the probabilistic scoring method8 
in which an experienced user can define a 
profile of property criteria that represents 
the desired outcomes for an ideal 
compound. The algorithm estimates the 
likelihood of success of each compound, 
taking the uncertainties in the property 
values into account. This enables the 
generated compounds to be prioritised 
and the highest scoring shown to a human 
expert. The most promising can be taken 
forward for synthesis and experimental 
studies, or the expert can update the 
scoring profile or the design parameters 
for the Nova module to generate a new 
list of suggestions.

Application
A practical application of the AI process 
shown in Figure 1 was demonstrated for 
the Open Source Malaria (OSM) challenge, 
where various teams were invited to build 
predictive models for pfATP4 activity based 
on an open source dataset11. The data 
were sparse and noisy and compounds 
had been measured across different 

labs, protocols and sensitivities, and 
assays had been performed on different 
strains of drug-resistant Plasmodium 
falciparum (p. fal.) malaria parasites. 
The deep imputation model was able to 
impute this sparse and noisy matrix, while 
exploiting correlations between the strains, 
labs and associated measurements. The 
model also produced accurate error 
bars for both imputed results and virtual 
model predictions. A virtual library of 
approximately 100,000 structures was 
created through a combination of the two 
generative methods and the probabilistic 
scoring profile was defined to maximise 
activity in all assays, as well as increase 
solubility, while taking the confidence in 
each individual prediction into account.
Figure 2 shows the four compounds most 
likely to succeed, generated by the two 
approaches. Upon review, compound a) 
was considered to have a reactivity problem 
that may result in HF production and was 
discounted. In addition, compound c) was 
considered to be potentially unstable. 
The algorithms used could be improved 
to detect these high-level pitfalls and this 
reiterates the importance of the ‘expert 
chemist verification’ as depicted in Figure 1.

The compound most likely to succeed, 
the tert-butyl compound (b), had a 
predicted pIC50 value of 6.4 in the target 
assay. This was sent for experimental 
synthesis and, when tested, the experi-
mental pIC50 was 6.2, well within the 
uncertainties in both the experimental 
and predicted values. This activity met 
the project criteria for activity, which was 
a pIC50 > 6.

Of the novel compounds proposed 
by four organisations in the project, this 
was the only experimentally verified 
active, illustrating that methods which 
cannot reliably consider uncertainty often 
struggle to filter the successful actives 
from noisy predictions. Furthermore, 
the project chemists considered that the 
tert-butoxy group on compound b) gives 
new directions in the SAR and it is unlikely 
that this compound would have been 
considered by a human. These are exactly 

Figure 2: The most confident structures generated by the AI. Compounds a) and b) are from the bottom up 
Nova approach, compounds c) and d) were generated using the generative ML approach.
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compounds, i.e. those that have not 
yet been synthesised, with greater 
accuracy than the best QSAR methods5, 
while simultaneously providing robust 
error bars. This virtual model forms the 
explorative basis for the AI allowing it 
to judge new compounds which are 
generated by two methods.

Compound Generation
Broadly speaking, there are two kinds 
of approach for compound generation, 
a bottom up and a top down approach:

Bottom up: Start from known chemistry 
and optimise outward to explore related 
compounds to search for those that are 
likely to satisfy project requirements 
(activity, selectivity, ADME, etc.). This 
method closely resembles a human-led 
drug discovery programme, starting from 
known hits and performing synthetically 
accessible variations around promising 
compounds, but can explore many more, 
diverse ideas in a shorter time than even 
an expert chemist12. In algorithmic terms, 
it can be slow to iteratively approach the 
goals, but the proposed chemistry will 
be familiar to project chemists and more 
likely to be synthesisable. In Figure 1, 
this is covered by the component ‘Nova™’, 
a module in StarDrop™, which uses 
advanced evolutionary algorithms to 
generate libraries of virtual compounds 
using realistic chemistry transformations 
from the medicinal chemistry literature7. 

Top down: This strategy attempts to  
generate descriptors for an ‘ideal 
compound’ which would be predicted to 
have the desired properties. The algorithm 
then generates a structure that matches 
these ideal descriptors. This method is an 
example of generative ML methods6 and 
is shown as ‘Generative ML’ in Figure 1. 
If the model predictions are accurate 
and a solution can be found, then the 
compound is likely to fulfil all of the project 
requirements. However, these methods 
often struggle to make synthetically 
accessible and drug-like compounds, and 
models without uncertainty estimates may 
give untrustworthy answers. The deep 
imputation method used in this work 
does provide uncertainty estimates, and 
these can be factored into the optimisation 
process. For our implementation, we solve 
for the ideal descriptor vector using a 
gradient descent optimisation layer over 
the Alchemite model. This layer varies the 
descriptor while minimising the difference 
in the predictions of the fixed model and 

the desired properties for a compound. 
The solved descriptors are cleaned and 
minor variations are made about the 
solution. These idea descriptor vectors 
are subsequently entered into a recurrent 
neural network (RNN) decoder6 which is 
trained to write out SMILES representations 
as compound suggestions which meet 
the input descriptor profile. In our case, 
the StarDrop descriptors were generated 
for the original dataset alongside a large 
portion of the ChEMBL database. This 
meant the RNN would generate SMILES 
similar to ChEMBL compounds which also 
match the target ideal descriptors used as 
input.

Probabilistic Scoring
An important step is to take all of the 
virtual compounds generated from both 
methods, along with their predictions 
and uncertainties, and apply MPO to 
prioritise them for further consideration. 
This is because a high-quality compound 
must exhibit not only activity but also an 
appropriate balance of physicochemical 
and ADME properties. In this AI application 
we use the probabilistic scoring method8 
in which an experienced user can define a 
profile of property criteria that represents 
the desired outcomes for an ideal 
compound. The algorithm estimates the 
likelihood of success of each compound, 
taking the uncertainties in the property 
values into account. This enables the 
generated compounds to be prioritised 
and the highest scoring shown to a human 
expert. The most promising can be taken 
forward for synthesis and experimental 
studies, or the expert can update the 
scoring profile or the design parameters 
for the Nova module to generate a new 
list of suggestions.

Application
A practical application of the AI process 
shown in Figure 1 was demonstrated for 
the Open Source Malaria (OSM) challenge, 
where various teams were invited to build 
predictive models for pfATP4 activity based 
on an open source dataset11. The data 
were sparse and noisy and compounds 
had been measured across different 

labs, protocols and sensitivities, and 
assays had been performed on different 
strains of drug-resistant Plasmodium 
falciparum (p. fal.) malaria parasites. 
The deep imputation model was able to 
impute this sparse and noisy matrix, while 
exploiting correlations between the strains, 
labs and associated measurements. The 
model also produced accurate error 
bars for both imputed results and virtual 
model predictions. A virtual library of 
approximately 100,000 structures was 
created through a combination of the two 
generative methods and the probabilistic 
scoring profile was defined to maximise 
activity in all assays, as well as increase 
solubility, while taking the confidence in 
each individual prediction into account.
Figure 2 shows the four compounds most 
likely to succeed, generated by the two 
approaches. Upon review, compound a) 
was considered to have a reactivity problem 
that may result in HF production and was 
discounted. In addition, compound c) was 
considered to be potentially unstable. 
The algorithms used could be improved 
to detect these high-level pitfalls and this 
reiterates the importance of the ‘expert 
chemist verification’ as depicted in Figure 1.

The compound most likely to succeed, 
the tert-butyl compound (b), had a 
predicted pIC50 value of 6.4 in the target 
assay. This was sent for experimental 
synthesis and, when tested, the experi-
mental pIC50 was 6.2, well within the 
uncertainties in both the experimental 
and predicted values. This activity met 
the project criteria for activity, which was 
a pIC50 > 6.

Of the novel compounds proposed 
by four organisations in the project, this 
was the only experimentally verified 
active, illustrating that methods which 
cannot reliably consider uncertainty often 
struggle to filter the successful actives 
from noisy predictions. Furthermore, 
the project chemists considered that the 
tert-butoxy group on compound b) gives 
new directions in the SAR and it is unlikely 
that this compound would have been 
considered by a human. These are exactly 

Figure 2: The most confident structures generated by the AI. Compounds a) and b) are from the bottom up 
Nova approach, compounds c) and d) were generated using the generative ML approach.
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compounds, i.e. those that have not 
yet been synthesised, with greater 
accuracy than the best QSAR methods5, 
while simultaneously providing robust 
error bars. This virtual model forms the 
explorative basis for the AI allowing it 
to judge new compounds which are 
generated by two methods.

Compound Generation
Broadly speaking, there are two kinds 
of approach for compound generation, 
a bottom up and a top down approach:

Bottom up: Start from known chemistry 
and optimise outward to explore related 
compounds to search for those that are 
likely to satisfy project requirements 
(activity, selectivity, ADME, etc.). This 
method closely resembles a human-led 
drug discovery programme, starting from 
known hits and performing synthetically 
accessible variations around promising 
compounds, but can explore many more, 
diverse ideas in a shorter time than even 
an expert chemist12. In algorithmic terms, 
it can be slow to iteratively approach the 
goals, but the proposed chemistry will 
be familiar to project chemists and more 
likely to be synthesisable. In Figure 1, 
this is covered by the component ‘Nova™’, 
a module in StarDrop™, which uses 
advanced evolutionary algorithms to 
generate libraries of virtual compounds 
using realistic chemistry transformations 
from the medicinal chemistry literature7. 

Top down: This strategy attempts to  
generate descriptors for an ‘ideal 
compound’ which would be predicted to 
have the desired properties. The algorithm 
then generates a structure that matches 
these ideal descriptors. This method is an 
example of generative ML methods6 and 
is shown as ‘Generative ML’ in Figure 1. 
If the model predictions are accurate 
and a solution can be found, then the 
compound is likely to fulfil all of the project 
requirements. However, these methods 
often struggle to make synthetically 
accessible and drug-like compounds, and 
models without uncertainty estimates may 
give untrustworthy answers. The deep 
imputation method used in this work 
does provide uncertainty estimates, and 
these can be factored into the optimisation 
process. For our implementation, we solve 
for the ideal descriptor vector using a 
gradient descent optimisation layer over 
the Alchemite model. This layer varies the 
descriptor while minimising the difference 
in the predictions of the fixed model and 

the desired properties for a compound. 
The solved descriptors are cleaned and 
minor variations are made about the 
solution. These idea descriptor vectors 
are subsequently entered into a recurrent 
neural network (RNN) decoder6 which is 
trained to write out SMILES representations 
as compound suggestions which meet 
the input descriptor profile. In our case, 
the StarDrop descriptors were generated 
for the original dataset alongside a large 
portion of the ChEMBL database. This 
meant the RNN would generate SMILES 
similar to ChEMBL compounds which also 
match the target ideal descriptors used as 
input.

Probabilistic Scoring
An important step is to take all of the 
virtual compounds generated from both 
methods, along with their predictions 
and uncertainties, and apply MPO to 
prioritise them for further consideration. 
This is because a high-quality compound 
must exhibit not only activity but also an 
appropriate balance of physicochemical 
and ADME properties. In this AI application 
we use the probabilistic scoring method8 
in which an experienced user can define a 
profile of property criteria that represents 
the desired outcomes for an ideal 
compound. The algorithm estimates the 
likelihood of success of each compound, 
taking the uncertainties in the property 
values into account. This enables the 
generated compounds to be prioritised 
and the highest scoring shown to a human 
expert. The most promising can be taken 
forward for synthesis and experimental 
studies, or the expert can update the 
scoring profile or the design parameters 
for the Nova module to generate a new 
list of suggestions.

Application
A practical application of the AI process 
shown in Figure 1 was demonstrated for 
the Open Source Malaria (OSM) challenge, 
where various teams were invited to build 
predictive models for pfATP4 activity based 
on an open source dataset11. The data 
were sparse and noisy and compounds 
had been measured across different 

labs, protocols and sensitivities, and 
assays had been performed on different 
strains of drug-resistant Plasmodium 
falciparum (p. fal.) malaria parasites. 
The deep imputation model was able to 
impute this sparse and noisy matrix, while 
exploiting correlations between the strains, 
labs and associated measurements. The 
model also produced accurate error 
bars for both imputed results and virtual 
model predictions. A virtual library of 
approximately 100,000 structures was 
created through a combination of the two 
generative methods and the probabilistic 
scoring profile was defined to maximise 
activity in all assays, as well as increase 
solubility, while taking the confidence in 
each individual prediction into account.
Figure 2 shows the four compounds most 
likely to succeed, generated by the two 
approaches. Upon review, compound a) 
was considered to have a reactivity problem 
that may result in HF production and was 
discounted. In addition, compound c) was 
considered to be potentially unstable. 
The algorithms used could be improved 
to detect these high-level pitfalls and this 
reiterates the importance of the ‘expert 
chemist verification’ as depicted in Figure 1.

The compound most likely to succeed, 
the tert-butyl compound (b), had a 
predicted pIC50 value of 6.4 in the target 
assay. This was sent for experimental 
synthesis and, when tested, the experi-
mental pIC50 was 6.2, well within the 
uncertainties in both the experimental 
and predicted values. This activity met 
the project criteria for activity, which was 
a pIC50 > 6.

Of the novel compounds proposed 
by four organisations in the project, this 
was the only experimentally verified 
active, illustrating that methods which 
cannot reliably consider uncertainty often 
struggle to filter the successful actives 
from noisy predictions. Furthermore, 
the project chemists considered that the 
tert-butoxy group on compound b) gives 
new directions in the SAR and it is unlikely 
that this compound would have been 
considered by a human. These are exactly 

Figure 2: The most confident structures generated by the AI. Compounds a) and b) are from the bottom up 
Nova approach, compounds c) and d) were generated using the generative ML approach.
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compounds, i.e. those that have not 
yet been synthesised, with greater 
accuracy than the best QSAR methods5, 
while simultaneously providing robust 
error bars. This virtual model forms the 
explorative basis for the AI allowing it 
to judge new compounds which are 
generated by two methods.

Compound Generation
Broadly speaking, there are two kinds 
of approach for compound generation, 
a bottom up and a top down approach:

Bottom up: Start from known chemistry 
and optimise outward to explore related 
compounds to search for those that are 
likely to satisfy project requirements 
(activity, selectivity, ADME, etc.). This 
method closely resembles a human-led 
drug discovery programme, starting from 
known hits and performing synthetically 
accessible variations around promising 
compounds, but can explore many more, 
diverse ideas in a shorter time than even 
an expert chemist12. In algorithmic terms, 
it can be slow to iteratively approach the 
goals, but the proposed chemistry will 
be familiar to project chemists and more 
likely to be synthesisable. In Figure 1, 
this is covered by the component ‘Nova™’, 
a module in StarDrop™, which uses 
advanced evolutionary algorithms to 
generate libraries of virtual compounds 
using realistic chemistry transformations 
from the medicinal chemistry literature7. 

Top down: This strategy attempts to  
generate descriptors for an ‘ideal 
compound’ which would be predicted to 
have the desired properties. The algorithm 
then generates a structure that matches 
these ideal descriptors. This method is an 
example of generative ML methods6 and 
is shown as ‘Generative ML’ in Figure 1. 
If the model predictions are accurate 
and a solution can be found, then the 
compound is likely to fulfil all of the project 
requirements. However, these methods 
often struggle to make synthetically 
accessible and drug-like compounds, and 
models without uncertainty estimates may 
give untrustworthy answers. The deep 
imputation method used in this work 
does provide uncertainty estimates, and 
these can be factored into the optimisation 
process. For our implementation, we solve 
for the ideal descriptor vector using a 
gradient descent optimisation layer over 
the Alchemite model. This layer varies the 
descriptor while minimising the difference 
in the predictions of the fixed model and 

the desired properties for a compound. 
The solved descriptors are cleaned and 
minor variations are made about the 
solution. These idea descriptor vectors 
are subsequently entered into a recurrent 
neural network (RNN) decoder6 which is 
trained to write out SMILES representations 
as compound suggestions which meet 
the input descriptor profile. In our case, 
the StarDrop descriptors were generated 
for the original dataset alongside a large 
portion of the ChEMBL database. This 
meant the RNN would generate SMILES 
similar to ChEMBL compounds which also 
match the target ideal descriptors used as 
input.

Probabilistic Scoring
An important step is to take all of the 
virtual compounds generated from both 
methods, along with their predictions 
and uncertainties, and apply MPO to 
prioritise them for further consideration. 
This is because a high-quality compound 
must exhibit not only activity but also an 
appropriate balance of physicochemical 
and ADME properties. In this AI application 
we use the probabilistic scoring method8 
in which an experienced user can define a 
profile of property criteria that represents 
the desired outcomes for an ideal 
compound. The algorithm estimates the 
likelihood of success of each compound, 
taking the uncertainties in the property 
values into account. This enables the 
generated compounds to be prioritised 
and the highest scoring shown to a human 
expert. The most promising can be taken 
forward for synthesis and experimental 
studies, or the expert can update the 
scoring profile or the design parameters 
for the Nova module to generate a new 
list of suggestions.

Application
A practical application of the AI process 
shown in Figure 1 was demonstrated for 
the Open Source Malaria (OSM) challenge, 
where various teams were invited to build 
predictive models for pfATP4 activity based 
on an open source dataset11. The data 
were sparse and noisy and compounds 
had been measured across different 

labs, protocols and sensitivities, and 
assays had been performed on different 
strains of drug-resistant Plasmodium 
falciparum (p. fal.) malaria parasites. 
The deep imputation model was able to 
impute this sparse and noisy matrix, while 
exploiting correlations between the strains, 
labs and associated measurements. The 
model also produced accurate error 
bars for both imputed results and virtual 
model predictions. A virtual library of 
approximately 100,000 structures was 
created through a combination of the two 
generative methods and the probabilistic 
scoring profile was defined to maximise 
activity in all assays, as well as increase 
solubility, while taking the confidence in 
each individual prediction into account.
Figure 2 shows the four compounds most 
likely to succeed, generated by the two 
approaches. Upon review, compound a) 
was considered to have a reactivity problem 
that may result in HF production and was 
discounted. In addition, compound c) was 
considered to be potentially unstable. 
The algorithms used could be improved 
to detect these high-level pitfalls and this 
reiterates the importance of the ‘expert 
chemist verification’ as depicted in Figure 1.

The compound most likely to succeed, 
the tert-butyl compound (b), had a 
predicted pIC50 value of 6.4 in the target 
assay. This was sent for experimental 
synthesis and, when tested, the experi-
mental pIC50 was 6.2, well within the 
uncertainties in both the experimental 
and predicted values. This activity met 
the project criteria for activity, which was 
a pIC50 > 6.

Of the novel compounds proposed 
by four organisations in the project, this 
was the only experimentally verified 
active, illustrating that methods which 
cannot reliably consider uncertainty often 
struggle to filter the successful actives 
from noisy predictions. Furthermore, 
the project chemists considered that the 
tert-butoxy group on compound b) gives 
new directions in the SAR and it is unlikely 
that this compound would have been 
considered by a human. These are exactly 

Figure 2: The most confident structures generated by the AI. Compounds a) and b) are from the bottom up 
Nova approach, compounds c) and d) were generated using the generative ML approach.
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compounds, i.e. those that have not 
yet been synthesised, with greater 
accuracy than the best QSAR methods5, 
while simultaneously providing robust 
error bars. This virtual model forms the 
explorative basis for the AI allowing it 
to judge new compounds which are 
generated by two methods.

Compound Generation
Broadly speaking, there are two kinds 
of approach for compound generation, 
a bottom up and a top down approach:

Bottom up: Start from known chemistry 
and optimise outward to explore related 
compounds to search for those that are 
likely to satisfy project requirements 
(activity, selectivity, ADME, etc.). This 
method closely resembles a human-led 
drug discovery programme, starting from 
known hits and performing synthetically 
accessible variations around promising 
compounds, but can explore many more, 
diverse ideas in a shorter time than even 
an expert chemist12. In algorithmic terms, 
it can be slow to iteratively approach the 
goals, but the proposed chemistry will 
be familiar to project chemists and more 
likely to be synthesisable. In Figure 1, 
this is covered by the component ‘Nova™’, 
a module in StarDrop™, which uses 
advanced evolutionary algorithms to 
generate libraries of virtual compounds 
using realistic chemistry transformations 
from the medicinal chemistry literature7. 

Top down: This strategy attempts to  
generate descriptors for an ‘ideal 
compound’ which would be predicted to 
have the desired properties. The algorithm 
then generates a structure that matches 
these ideal descriptors. This method is an 
example of generative ML methods6 and 
is shown as ‘Generative ML’ in Figure 1. 
If the model predictions are accurate 
and a solution can be found, then the 
compound is likely to fulfil all of the project 
requirements. However, these methods 
often struggle to make synthetically 
accessible and drug-like compounds, and 
models without uncertainty estimates may 
give untrustworthy answers. The deep 
imputation method used in this work 
does provide uncertainty estimates, and 
these can be factored into the optimisation 
process. For our implementation, we solve 
for the ideal descriptor vector using a 
gradient descent optimisation layer over 
the Alchemite model. This layer varies the 
descriptor while minimising the difference 
in the predictions of the fixed model and 

the desired properties for a compound. 
The solved descriptors are cleaned and 
minor variations are made about the 
solution. These idea descriptor vectors 
are subsequently entered into a recurrent 
neural network (RNN) decoder6 which is 
trained to write out SMILES representations 
as compound suggestions which meet 
the input descriptor profile. In our case, 
the StarDrop descriptors were generated 
for the original dataset alongside a large 
portion of the ChEMBL database. This 
meant the RNN would generate SMILES 
similar to ChEMBL compounds which also 
match the target ideal descriptors used as 
input.

Probabilistic Scoring
An important step is to take all of the 
virtual compounds generated from both 
methods, along with their predictions 
and uncertainties, and apply MPO to 
prioritise them for further consideration. 
This is because a high-quality compound 
must exhibit not only activity but also an 
appropriate balance of physicochemical 
and ADME properties. In this AI application 
we use the probabilistic scoring method8 
in which an experienced user can define a 
profile of property criteria that represents 
the desired outcomes for an ideal 
compound. The algorithm estimates the 
likelihood of success of each compound, 
taking the uncertainties in the property 
values into account. This enables the 
generated compounds to be prioritised 
and the highest scoring shown to a human 
expert. The most promising can be taken 
forward for synthesis and experimental 
studies, or the expert can update the 
scoring profile or the design parameters 
for the Nova module to generate a new 
list of suggestions.

Application
A practical application of the AI process 
shown in Figure 1 was demonstrated for 
the Open Source Malaria (OSM) challenge, 
where various teams were invited to build 
predictive models for pfATP4 activity based 
on an open source dataset11. The data 
were sparse and noisy and compounds 
had been measured across different 

labs, protocols and sensitivities, and 
assays had been performed on different 
strains of drug-resistant Plasmodium 
falciparum (p. fal.) malaria parasites. 
The deep imputation model was able to 
impute this sparse and noisy matrix, while 
exploiting correlations between the strains, 
labs and associated measurements. The 
model also produced accurate error 
bars for both imputed results and virtual 
model predictions. A virtual library of 
approximately 100,000 structures was 
created through a combination of the two 
generative methods and the probabilistic 
scoring profile was defined to maximise 
activity in all assays, as well as increase 
solubility, while taking the confidence in 
each individual prediction into account.
Figure 2 shows the four compounds most 
likely to succeed, generated by the two 
approaches. Upon review, compound a) 
was considered to have a reactivity problem 
that may result in HF production and was 
discounted. In addition, compound c) was 
considered to be potentially unstable. 
The algorithms used could be improved 
to detect these high-level pitfalls and this 
reiterates the importance of the ‘expert 
chemist verification’ as depicted in Figure 1.

The compound most likely to succeed, 
the tert-butyl compound (b), had a 
predicted pIC50 value of 6.4 in the target 
assay. This was sent for experimental 
synthesis and, when tested, the experi-
mental pIC50 was 6.2, well within the 
uncertainties in both the experimental 
and predicted values. This activity met 
the project criteria for activity, which was 
a pIC50 > 6.

Of the novel compounds proposed 
by four organisations in the project, this 
was the only experimentally verified 
active, illustrating that methods which 
cannot reliably consider uncertainty often 
struggle to filter the successful actives 
from noisy predictions. Furthermore, 
the project chemists considered that the 
tert-butoxy group on compound b) gives 
new directions in the SAR and it is unlikely 
that this compound would have been 
considered by a human. These are exactly 

Figure 2: The most confident structures generated by the AI. Compounds a) and b) are from the bottom up 
Nova approach, compounds c) and d) were generated using the generative ML approach.
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compounds, i.e. those that have not 
yet been synthesised, with greater 
accuracy than the best QSAR methods5, 
while simultaneously providing robust 
error bars. This virtual model forms the 
explorative basis for the AI allowing it 
to judge new compounds which are 
generated by two methods.

Compound Generation
Broadly speaking, there are two kinds 
of approach for compound generation, 
a bottom up and a top down approach:

Bottom up: Start from known chemistry 
and optimise outward to explore related 
compounds to search for those that are 
likely to satisfy project requirements 
(activity, selectivity, ADME, etc.). This 
method closely resembles a human-led 
drug discovery programme, starting from 
known hits and performing synthetically 
accessible variations around promising 
compounds, but can explore many more, 
diverse ideas in a shorter time than even 
an expert chemist12. In algorithmic terms, 
it can be slow to iteratively approach the 
goals, but the proposed chemistry will 
be familiar to project chemists and more 
likely to be synthesisable. In Figure 1, 
this is covered by the component ‘Nova™’, 
a module in StarDrop™, which uses 
advanced evolutionary algorithms to 
generate libraries of virtual compounds 
using realistic chemistry transformations 
from the medicinal chemistry literature7. 

Top down: This strategy attempts to  
generate descriptors for an ‘ideal 
compound’ which would be predicted to 
have the desired properties. The algorithm 
then generates a structure that matches 
these ideal descriptors. This method is an 
example of generative ML methods6 and 
is shown as ‘Generative ML’ in Figure 1. 
If the model predictions are accurate 
and a solution can be found, then the 
compound is likely to fulfil all of the project 
requirements. However, these methods 
often struggle to make synthetically 
accessible and drug-like compounds, and 
models without uncertainty estimates may 
give untrustworthy answers. The deep 
imputation method used in this work 
does provide uncertainty estimates, and 
these can be factored into the optimisation 
process. For our implementation, we solve 
for the ideal descriptor vector using a 
gradient descent optimisation layer over 
the Alchemite model. This layer varies the 
descriptor while minimising the difference 
in the predictions of the fixed model and 

the desired properties for a compound. 
The solved descriptors are cleaned and 
minor variations are made about the 
solution. These idea descriptor vectors 
are subsequently entered into a recurrent 
neural network (RNN) decoder6 which is 
trained to write out SMILES representations 
as compound suggestions which meet 
the input descriptor profile. In our case, 
the StarDrop descriptors were generated 
for the original dataset alongside a large 
portion of the ChEMBL database. This 
meant the RNN would generate SMILES 
similar to ChEMBL compounds which also 
match the target ideal descriptors used as 
input.

Probabilistic Scoring
An important step is to take all of the 
virtual compounds generated from both 
methods, along with their predictions 
and uncertainties, and apply MPO to 
prioritise them for further consideration. 
This is because a high-quality compound 
must exhibit not only activity but also an 
appropriate balance of physicochemical 
and ADME properties. In this AI application 
we use the probabilistic scoring method8 
in which an experienced user can define a 
profile of property criteria that represents 
the desired outcomes for an ideal 
compound. The algorithm estimates the 
likelihood of success of each compound, 
taking the uncertainties in the property 
values into account. This enables the 
generated compounds to be prioritised 
and the highest scoring shown to a human 
expert. The most promising can be taken 
forward for synthesis and experimental 
studies, or the expert can update the 
scoring profile or the design parameters 
for the Nova module to generate a new 
list of suggestions.

Application
A practical application of the AI process 
shown in Figure 1 was demonstrated for 
the Open Source Malaria (OSM) challenge, 
where various teams were invited to build 
predictive models for pfATP4 activity based 
on an open source dataset11. The data 
were sparse and noisy and compounds 
had been measured across different 

labs, protocols and sensitivities, and 
assays had been performed on different 
strains of drug-resistant Plasmodium 
falciparum (p. fal.) malaria parasites. 
The deep imputation model was able to 
impute this sparse and noisy matrix, while 
exploiting correlations between the strains, 
labs and associated measurements. The 
model also produced accurate error 
bars for both imputed results and virtual 
model predictions. A virtual library of 
approximately 100,000 structures was 
created through a combination of the two 
generative methods and the probabilistic 
scoring profile was defined to maximise 
activity in all assays, as well as increase 
solubility, while taking the confidence in 
each individual prediction into account.
Figure 2 shows the four compounds most 
likely to succeed, generated by the two 
approaches. Upon review, compound a) 
was considered to have a reactivity problem 
that may result in HF production and was 
discounted. In addition, compound c) was 
considered to be potentially unstable. 
The algorithms used could be improved 
to detect these high-level pitfalls and this 
reiterates the importance of the ‘expert 
chemist verification’ as depicted in Figure 1.

The compound most likely to succeed, 
the tert-butyl compound (b), had a 
predicted pIC50 value of 6.4 in the target 
assay. This was sent for experimental 
synthesis and, when tested, the experi-
mental pIC50 was 6.2, well within the 
uncertainties in both the experimental 
and predicted values. This activity met 
the project criteria for activity, which was 
a pIC50 > 6.

Of the novel compounds proposed 
by four organisations in the project, this 
was the only experimentally verified 
active, illustrating that methods which 
cannot reliably consider uncertainty often 
struggle to filter the successful actives 
from noisy predictions. Furthermore, 
the project chemists considered that the 
tert-butoxy group on compound b) gives 
new directions in the SAR and it is unlikely 
that this compound would have been 
considered by a human. These are exactly 

Figure 2: The most confident structures generated by the AI. Compounds a) and b) are from the bottom up 
Nova approach, compounds c) and d) were generated using the generative ML approach.
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Figure 3: The chiral compound that was highlighted  
as a potential missed opportunity in the dataset. 

the kinds of benefits that an augmented 
tool will provide.

Additional insights were found in 
imputation of the original data in the context 
of the output ‘confident identification 
of missed opportunities’ in the process 
illustrated in Figure 1. Upon imputation, 
a compound with a single experimental 
“inactive” measurement (IC50 > 10) was 
proposed as being active in two other 
assays with a high degree of confidence 
(predicted p. fal. pEC50 of 7.2 and single shot 
inhibition of 96%). Upon digging deeper, 
the compound was found to be chiral 
(Figure 3). The compound was supposedly 
enantioenriched, but it was not known 
which enantiomer was more prevalent 
and the chirality had not been registered 
in the database. Upon experimentally 
resolving the enantiomers by chiral liquid 
chromatography, the enantiomer in Figure 
3 was confirmed as inactive, while the other 
was confirmed as active. The AI was aware 
that there was a chance for activity and the 
active compound, which had been ruled 
out by a single datapoint, could have been 
a missed opportunity.

Opportunities for Future Improvements
There are many further potential 
improvements than can be made to the 
process in Figure 1. We can combine 
additional data in the first instance to find 
correlations in public or private repositories. 
The descriptor generator used in the data 
preparation block could be upgraded to 
a machine learning tool such as a graph 
convolutional network. Further advances 
could be made to the optimisation steps, 
such as by employing reinforcement 
learning approaches. The RNN encoder 
could be replaced with a full generative 
adversarial network, which has been trained 
to produce drug-like and synthetically 
accessible compounds. The foundation 
developed here could easily grow into an 
even more powerful AI for drug discovery. 

Conclusions
The combination of machine learning 
components can lead to an advanced 
system, which embodies a sophisticated 
AI tool. Using the Alchemite method, we 
are able to use all of the data available, 
even though it is sparse and noisy, and the 
resulting models output robust uncertainty 
estimates, which are essentially for later 
MPO and prioritisation of compounds. 
This concept was demonstrated through 
the efficient identification of a novel active 
antimalarial compound.
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