
 

 
7221 Cambridge Research Park 

Beach Drive, Cambridge 

CB25 9TL, UK 

Tel: +44 1223 815900 

Fax: +44 1223 815907 

Email: info@optibrium.com 

Website: www.optibrium.com 

Optibrium Limited, registered in England and Wales No. 06715106. Optibrium™ and StarDrop™ and trademarks of Optibrium Ltd. 

The challenges of making decisions using uncertain 

data 

Matthew D. Segall and Edmund J. Champness 

Optibrium Ltd., 7221 Cambridge Research Park, Beach Drive, Cambridge, CB25 9TL, UK 

 

Abstract 
All of the experimental compound data with which we work have significant uncertainties due to variability in 
experimental conditions and the imperfect correlations between experimental systems and the ultimate in vivo 
properties of compounds. When using these data to make decisions, it is essential that these uncertainties are 
taken into account to avoid making inappropriate decisions in the selection of compounds, which can lead to 
wasted effort and missed opportunities. In this paper we will consider approaches to rigorously account for 
uncertainties when choosing between compounds or selecting compounds against property criteria; first for an 
individual measurement of a single property and then for multiple measurements of a property for the same 
compound. We will then explore how uncertainties in multiple properties can be combined when assessing 
compounds against a profile of criteria, a process known as multi-parameter optimisation. This guides rigorous 
decision-making using complex, uncertain data to focus on compounds with the best chance of success, while 
avoiding missed opportunities by inappropriately rejecting compounds. 



 

 

Introduction 
When working with compound data, we should be aware of the uncertainties in the values obtained from 
experimental measurements and consider the impact that these have on the decisions that we make based on 
this information. It is well established that people find it challenging to make good decisions based on uncertain 
information; experimental psychologists have described many so-called cognitive biases that lead to missed 
opportunities and inefficient use of resources [1] [2].  In this paper, we will consider ways in which uncertainties 
in data can affect decisions on the selection and comparison of compounds and discuss approaches to take these 
uncertainties into account in order to mitigate the associated risks. 

There are two main sources of uncertainty in experimental measurements of compound properties: 

 We know that variability is observed in the results obtained from an assay when performed multiple 

times, due to minor changes in the experimental conditions, instrument noise or simply the variability 

inherent in complex biological systems. This can be considered as noise or statistical error around the 

‘true’ property value.  

 There are also uncertainties in the relevance of results from experimental systems to the ultimate 

goal of a project; for example, in drug discovery, we must remember that all experimental systems we 

use are models of the human patient and these do not correlate perfectly with the in vivo behaviour 

in human. 

In this paper, we will consider how we can rigorously take these sources of uncertainty into consideration when 
using data to make decisions about the selection or design of compounds, for example choosing between 
compounds or series for further investigation. 

We should also remember that identifying a successful compound requires the simultaneous optimisation of 
multiple compound properties; for a drug discovery objective these include potency against the therapeutic 
target(s), selectivity over off-targets, appropriate physicochemical, absorption, distribution, metabolism and 
excretion (ADME) properties and safety. Therefore, we will also explore approaches to deal with the 
combination of uncertainties in multiple properties in this multi-parameter optimisation (MPO) challenge [3]. 

Statistical Uncertainty 
If an experiment is repeated multiple times under the same conditions (as far as is possible), the results will vary 
to some extent. Differences between experimental samples, operators, instruments and the time or location at 
which the experiment is conducted are among the sources of variation that can give rise to experimental 
variability.  If we consider these variations to be sources of random errors, neglecting for now the possibility of 
systematic errors that consistently bias a result, we can consider the impact of this uncertainty on our confidence 
in choosing between two compounds.  

Single point data 

First, we consider the simple case where we have a single measurement, xA, of a property of compound A, for 
which the ‘true’ (but unknown) value of the property is XA. If we furthermore assume that the experimental 

error in this measurement is normally distributed with standard deviation  (a variance of 2), then this would 
be denoted: 

𝑋𝐴~𝑁(𝑥𝐴, 𝜎
2). 

We could, for example, estimate the standard deviation from a reference compound that has been run 
repeatedly through the assay (an estimate of the ‘population’ standard deviation). 

This scenario often occurs when we have early, single-point screening data for a compound and we could ask a 
question regarding whether the compound meets a selection criterion for the property. For example, if the 
property of interest is the activity against a target, expressed as a pKi (the negative log of the inhibition constant 
Ki in molar concentration), we might ask if a compound with a measured pKi of 7.1 (Ki = 79 nM) meets a selection 
criteria of pKi > 7 (Ki < 100 nM). If we assumed the data was perfect then clearly the answer is “yes”. However, 
a typical uncertainty in such a value might be 0.5 log units (one standard deviation), which is roughly equivalent 
to a factor of 3 in the Ki value. Therefore, we should ask, “What is the chance that this compound meets the 



 

 

selection criterion?”, as illustrated by the shaded region in Figure 1. Quantitatively, we can calculate the 
probability that the compound meets our criterion as: 

𝑃(𝑋𝐴 > 7) = 𝑃(𝑁(𝑥𝐴, 𝜎
2) > 7) = 𝑃 (𝑍 >

(7−𝑥𝐴)

𝜎
) = 𝑃(𝑍 > −0.2) = 0.58, 

where Z takes the standard Normal distribution, 𝑁(0,1). Therefore, we can only say that there is a 58% chance 
that this compound will meet our requirements, little better than a coin toss. 

If we had another compound, B, for which a single measurement, xB, had been made for the same property, 
then: 

𝑋𝐵~𝑁(𝑥𝐵 , 𝜎
2). 

We can then ask questions about the difference between the property values for compounds A and B and there 
are simple rules for combining the uncertainties. For example, the difference between the properties is: 

(𝑋𝐵 − 𝑋𝐴)~𝑁(𝑥𝐵 − 𝑥𝐴 , 2𝜎
2), 

which means that the standard deviation in the difference between the property values of compounds A and B 

is √2𝜎. 

For example, we might want to choose the more potent of the two compounds and, if the measured value of 
the pKi of compound B was 7.8 (Ki = 16 nM), this might lead us to choose compound B over compound A. 
However, if this measurement had the same standard deviation, then we can’t be absolutely confident that we 
can distinguish between these compounds, as illustrated in Figure 2. The probability that compound B is more 
potent than compound A is actually: 

𝑃(𝑋𝐵 − 𝑋𝐴 > 0) = 𝑃(𝑁(𝑥𝐵 − 𝑥𝐴 , 2𝜎
2) > 0) = 𝑃 (𝑍 >

𝑥𝐴−𝑥𝐵

√2𝜎
) = 𝑃(𝑍 > −0.99) = 0.84. 

So, again, we can only say that there is an 84% chance that compound B is more potent than compound A. All 
other things being equal, we would still probably place our bets on compounds B, but would we want to take 
the risk of missing an opportunity in compound A? 

  

Figure 1. The probability distribution of the pKi of a compound, corresponding 
to a measured value of 7.1 with a standard deviation of 0.5, assuming that the 
error is normally distributed. The vertical dashed line corresponds to a 
threshold value of 7 and the shaded region corresponds to the probability that 
the ‘true’ pKi value is greater than 7. 



 

 

Multiple measurements 

Given the inherent variability in biological systems, it is common to compare the average (or mean) property 
values of a compound. Therefore, as a project progresses, experiments will be often performed in replicate, to 
generate several data points for the same compound. If we had a very large number of replicates we could 

obtain a precise estimate of the ‘true’ mean, �̅�. However, in practice, only a handful of measurements may be 
made, which limits the accuracy of our estimate of this mean, �̅�, made from the sample. However, the accuracy 
of the estimate, the standard error in the mean, 𝑆𝐸�̅�, made from the limited sample, can be estimated from the 
standard deviation of the sample, s, as follows: 

�̅� =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1 , 

𝑠 = √
1

𝑁−1
∑ (𝑥𝑖 − �̅�)

2𝑁
𝑖=1 , 

𝑆𝐸�̅� =
𝑠

√𝑁
, 

where, N is the number of measurements and xi is the i’th measurement of the property. 

In these scenarios, the mean, �̅�, takes the Student’s t distribution [4] with N-1 degrees of freedom and this 
enables us to rigorously estimate probabilities in a similar manner to the single-measurement case above. For 
example, we may have two compounds C and D, for which the measurements in Table 1 have been made. 

Table 1 Example samples of data for two compound and calculated sample statistics. 

Compound Measurements 
Sample 

Mean (𝒙) 

Sample 
Standard 

Deviation (s) 

Standard 
Error in 

Mean (𝑺𝑬�̅�) 

C 1.5 3.2 2.4 3.5 4 2.92 0.98 0.44 

D 3.5 4.3 5.5 4.9 3.2 4.28 0.95 0.43 

 

  

Figure 2. Probability distributions of the pKi values of two compounds: 
Compound A (solid line) has a measured value of 7.1 and compound B (dashed 
line) has a measured value of 7.8. Both measurements have a standard 
deviations of 0.5 and we have assumed that the errors are normally 
distributed. The shaded region highlights the region in which there is a 
significant probability that the ‘true’ pKi of compound A is higher than that of 
compound B. 



 

 

We could then ask the question, what is the chance that the mean property value for compound C, �̅�𝐶,  is greater 
than 3? Which may be calculated as follows: 

𝑃(�̅�𝐶 > 3) = 𝑃 (𝑡4 >
�̅�𝐶−3

𝑆𝐸�̅�𝐶
) = 𝑃(𝑡4 > −0.18) = 0.43, 

where t4 takes the Student’s t distribution with 4 degrees of freedom. In this case, we might have been tempted 
to reject compound C, based on a measured average of 2.92 and a selection criterion of >3, when there is actually 
a 43% chance that the true average value meets this criterion. 

When comparing two compounds, based on their average measured values, the formulae become even more 
complex [4], but, for example, we can ask if compound D has a higher mean property than compound C, as 
follows: 

𝑃(�̅�𝐷 − �̅�𝐶 > 0) = 𝑃

(

 
 
𝑡 >

�̅�𝐶−�̅�𝐷

√𝑠𝐶
2+𝑠𝐷

2

𝑁
)

 
 
= 𝑃(𝑡8 > −2.22) = 0.97. 

Therefore, in this case, we can be 97% confident that compound D has a higher average property value than 
compound C. 

Combining measurements 

When combining data for different properties, to calculate a derived value such as target selectivity, the 
uncertainties in the individual measurements also combine. For example, ligand efficiency indices are currently 
popular metrics for comparing the ‘quality’ of compounds [5] and the ligand lipophilicity efficiency is defined as: 

𝐿𝐿𝐸 = pKi − logP, 

where logP is the logarithm of the octanol:water partition coefficient. However, as we’ve seen there will be 
experimental error in the pKi value and, similarly, there will be uncertainty in the logP value, particularly if a 
predicted value is used. Therefore, assuming both errors are normally distributed, the standard deviation in the 
LLE will be given by: 

𝜎𝐿𝐿𝐸 = √𝜎pKi
2 + 𝜎logP

2 , 

where 𝜎pKi is the standard deviation in the pKi value and 𝜎logP is the standard deviation in the logP. 

It is important to keep this in mind because uncertainties can accumulate quickly and make it difficult to 
distinguish between compounds based on these derived properties. 

Relevance 
Even if we knew the results of an experimental measurement precisely, this would not necessarily mean that 
we could make a confident decision. This is because the properties that are commonly measured early in a 
project are often models of the ultimate objective; in particular, in drug discovery, all experimental systems, 
whether in vitro or in vivo, are models of the human patient. These models do not correlate exactly with the in 
vivo outcome in human and therefore it may not be appropriate to apply hard criteria when selecting 
compounds, because this may lead to rejecting good compounds inappropriately. 

Take, for example, the data in Figure 3(a) comparing permeability across the human epithelial colorectal 
adenocarcinoma (Caco-2) cell line [6], a commonly used model of permeation across the human intestine, with 
clinically measured human intestinal absorption (HIA), as published by Irvine et al. [7]. Here we can see that a 
high measured Caco-2 permeability would give us confidence that the compound would be well absorbed, but 
a low permeation does not strongly indicate poor absorption, although we could say that the chance of achieving 
good oral absorption in humans would be lower. Therefore, it would not be appropriate to reject a compound 
outright based on a low Caco-2 permeability, particularly if other properties of the compound were good. 



 

 

 
 

(a) (b) 
Figure 3. (a) scatter plot of experimentally measured Caco-2 Papp against clinical human intestinal absorption for 52 
compounds published by Irvine et al. [7]. The histogram in (b) shows the proportion of compounds achieving a human 
intestinal absorption greater than 50% for Caco-2 Papp values binned in one log-unit ranges. The solid line corresponds to 
a desirability function approximately representing the likelihood of success of compounds for this objective against Caco-
2 Papp. 

One approach to avoiding hard cut-offs is to use a ‘desirability function’ [8] that relates the value of a 
measurement to its desirability, on a scale between 1 (ideal) to 0 (reject absolutely). These can reflect the impact 
of a property value on the chance of success of a compound to give a measurement appropriate weight in a 
decision. This is important because we know that some property criteria are critical, while it may be appropriate 
to compromise or trade-off other properties to achieve better results for critical factors.  

An example of this is shown in Figure 3(b) for the objective of achieving a HIA greater than 50%. The histogram 
bars indicate the chance of a compound achieving this objective for measured Caco-2 permeability in one log-
unit ranges, according to the data in Figure 3(a). Here we can see that, even for compounds with the lowest 
measured Caco-2 permeability, one third have a clinical HIA greater than 50%. The corresponding desirability 
function is shown, indicating that the ideal outcome would be a Caco-2 permeability above 100 nm/s (log(Papp) 
> 2) while the worst outcome would be a Caco-2 permeability below 1 nm/S (log(Papp) < 0), where the chance of 
success is still approximately one third. Between these values, the desirability increases approximately linearly. 

Combining Multiple Properties, Relevance and Uncertainty 
So far, we have explored approaches to considering uncertainties in data for a single property. However, when 
optimising a compound against a profile of property criteria, we should also consider how the uncertainties in 
the data combine to affect our ability to distinguish between compounds. 

If we consider a naïve approach of applying a series of hard cut-offs, or filters, we can see the issues that can 
arise. For example, if we apply filters for 5 different properties that are each 80% accurate in distinguishing 
‘good’ from ‘bad’ outcomes, the probability of an ideal compound passing all 5 filters is only 33%, i.e. we are 
twice as likely to reject a perfect compound than to take it forward. Given that perfect compounds are usually 
rare, the opportunity cost of these errors can be high. 

Using desirability functions softens the impact of hard cut-offs and the desirabilities of multiple properties can 
be combined to calculate a ‘desirability index’, representing the overall quality of a compound against a required 
property profile. The most common approaches for combining the individual property desirabilities use additive 
or multiplicative approaches: 

Additive: 𝐷(𝑥1, 𝑥2, … , 𝑥𝑁) = ∑ 𝑑𝑖(𝑥𝑖)
𝑁
𝑖=1  

Multiplicative: 𝐷(𝑥1, 𝑥2, … , 𝑥𝑀) = ∏ 𝑑𝑖(𝑥𝑖)
𝑁
𝑖=1   

where xi are the values of N compound properties and di are the desirability functions for the properties. These 
are sometimes normalised by the number of properties by taking the arithmetic or geometric mean, for the 
additive or multiplicative approaches respectively, and the individual desirabilities can be weighted to reflect 
different degrees of importance of each property. The relative strengths and weaknesses of these approaches 
and some other alternatives are discussed in more detail in [9]. 



 

 

 

Figure 4. An example of a profile of property criteria suitable for identifying a compound that is a potent inhibitor of the 
serotonin 5-Hydroxytryptamine (5-HT1A) receptor and has suitable physicochemical and ADME properties for oral dosing 
and a target in the central nervous system. Underlying each of the criteria are desirability functions, as illustrated for the 
pKi against 5-HT1A. The histogram behind the desirability function shows the distribution of pKi values for the compounds 
an example data set. 

The Probabilistic Scoring method [10] builds on desirability functions to explicitly account for the uncertainties 
in the underlying data. Using this approach, a profile of property criteria can be defined, as illustrated in Figure 
4, to reflect the requirements of a specific project. Underlying each of these criteria is a desirability function that 
reflects the importance and acceptable trade-offs for each property. By assessing the data and associated 
uncertainties, a score is calculated that represents the chance of success against the desired profile, i.e. the 
probability of achieving the ideal property criteria. Furthermore, the uncertainty in the overall score can be 
calculated, which indicates when compounds can be confidently distinguished or, conversely, when the data do 
not support this decision, as illustrated in Figure 5. This helps to avoid missed opportunities caused by giving too 
much weight to uncertain data. Furthermore, the impact of missing data, where a property of a compound has 
not yet been measured, can be accounted for rigorously. The impact of the missing data on the priority given to 
the compound can be assessed to identify when it would be valuable to ‘fill in’ the missing data point. 

Figure 5. The results of probabilistic scoring for the 10 compounds and associated data shown 
in Figure 6. The compounds are ordered from left to right along the x-axis in order of their score 
and the overall score for each compound is plotted on the y-axis. The uncertainty in each score 
(one standard deviation), due to the uncertainty in the underlying data, is shown by error bars 
around the corresponding point. From this it can be seen that compounds B, J, D, A and E 
cannot be confidently distinguished based on the available data, while H, F, G and I can be 
confidently rejected. The probability that compound C is equivalent to the highest scoring 
compound is small although the difference is not statistically significant. 



 

 

   

(a) (b) (c) 

Figure 6. A simple, hypothetical example of prioritisation of 10 compounds (labelled A through J) with data for potency 
(pKi), log selectivity and log solubility (µM) using three methods. 

a) The results of applying filters corresponding to pKi > 7, log selectivity > 1 and log solubility > 2. A green cell 
indicates that the property passes the criterion and red that it fails. Compound D is coloured yellow because it 
lies exactly on the thresholds for all three properties. 

b) The results of calculating a score corresponding to a multiplicative desirability index using the desirability 
functions for the three properties shown in Figure 7. The compounds are sorted by score and the cells are 
coloured by the desirability of each property value from red (0) to green (1). 

c) The results of applying Probabilistic Scoring using desirability functions shown in Figure 7 and the following 

uncertainties (1 standard deviation): pKi  0.3; log selectivity  0.4; log solubility  0.6 log units. The compounds 
are ordered by score and the cells are coloured by the likelihood of achieving the ideal outcome for the 
corresponding property from red (0) to green (1).  

As an example, consider the simple, hypothetical data set shown in Figure 6, showing values for potency, 
selectivity and solubility for 10 compounds labelled A through J. In Figure 6(a) the results are shown for filtering 
the compounds based on the following cut-offs: 

 Potency (pKi) > 7 (better than 100 nM) 

 Log selectivity > 1 (better than a factor of 10) 

 Log solubility (µM) > 2 (better than 100 µM) 

Note that all of the compounds fail on one or more criteria, except for one which is on the threshold for all three 
properties. Also note that the selectivity value for compound J is missing, so it is not known if this compound 
would pass all of the criteria. Therefore, if we were to choose any compound on this basis, it would be compound 
D, but none of the compounds clearly meet all of the criteria. 

If we apply the desirability functions shown in Figure 7 to the property values of these compounds, using a 
multiplicative scheme to calculate the overall scores, the results are shown in Figure 6(b). Here we see that 
compound D would still be ranked highest, but the remaining compounds can also be prioritised according to 
the importance of each property and the desirability of property values close to the ideal cut-offs. It is still not 
clear how to prioritise compound J due to the missing data for selectivity. 

However, there are uncertainties in the property values, as follows: 

 Potency (pKi): 0.3 log units (a factor of 2 in the Ki) 

 Log Selectivity: 0.4 log units (a factor of 2.6, derived from the ratio of two potencies each with a 

factor of 2 uncertainty) 

 Log Solubility: 0.6 log units 



 

 

   

Potency (pKi) Log Selectivity Log Solubility (µM) 

Figure 7. Desirability functions for potency (pKi), log selectivity and log solubility (µM), as applied to the example 
compounds in Figure 6. The desirability function for potency corresponds to an ideal pKi greater than 7 and a linearly 
increasing likelihood of success from a minimum of 0.05 for pKi values less than 6.7. The desirability function for log 
selectivity corresponds to an ideal value greater than 1 and a linearly increasing likelihood of success from a minimum of 
0.3 for values less than 1.7. The desirability function for log solubility corresponds to an ideal value greater than 2 and a 
linearly increasing likelihood of success from a minimum of 0.3 for values less than 0.9. The histograms in each case shows 
the distribution of the corresponding property for the data set in Figure 6. 

Therefore, applying Probabilistic Scoring to these compounds, using the same desirability functions shown in 
Figure 7 and taking into account these uncertainties, gives rise to the scores shown in Figure 6(c). Now we can 
see that compound B has the best overall chance of success because it lies confidently above the ideal criteria 
for potency and solubility and close to the cut-off for selectivity. Also note that compound J can now be ranked 
alongside the other compounds because the missing data can be rigorously considered as a very uncertain value 
and the impact of this uncertainty assessed. Due to the good values compound J achieved for potency and 
solubility it ranks higher than compounds which fail these property criteria with confidence and those that 
confidently fail the criterion for selectivity; it is better to have an uncertain result than a value that is known to 
be poor. 

The overall impact of the uncertainties is shown in Figure 5, where the error bars indicate the uncertainties in 
the overall score. Here we can see that, in fact, the top 5 or 6 compounds cannot be confidently distinguished 
from the highest ranked compound based on the available data. Only compounds F, G, H and I can be rejected 
with confidence, while the probability that C is equivalent to the highest scoring compound is small, although 
the difference is not statistically significant. 

Conclusion 
We have explored approaches to account for the uncertainties in compound data and the impact these have on 
decisions regarding the selection and prioritisation of compounds. Neglecting uncertainties can lead to poor 
decisions, resulting in wasted time and effort and missed opportunities. The last of these is possibly the most 
insidious because, once rejected, it is rare to return to a compound or series, so the lost value is unlikely to be 
discovered. 

Further analysis of the impact of uncertainty on decisions can yield answers to strategic questions regarding the 
value of different sources of data to decision-making, in light of the confidence they provide [11]. This analysis 
uses Bayesian probability theory [12] which requires a knowledge of the prior probability distribution, or 
underlying distribution of the property, in question. However, the scope of this analysis is currently limited 
because priors for the most prevalent risk factors for compound optimisation are not generally known. 

Finally, as we have seen, the mathematics involved in assessing the impact of uncertainties can be quite 
daunting, which leads to the temptation to ignore uncertainty and hope for the best! Therefore, it essential that 
chemistry software can automatically propagate uncertainties through data analyses and present the results in 
an intuitive way to guide effective decisions on compound optimisation. 
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