The Journey from Drug Discovery to Drug Design: How far have we travelled?

Matthew Segall

matt.segall@glpg.com

SMI *In Silico* ADMET 16-17 May 2007

Copyright © 2006 Galapagos NV

- · Design vs. Discovery
- Analogy of drug design The Boeing 777
 - > Why does this analogy break down?
- An alternative analogy Card counting in blackjack
- · Applying predictions to support decision-making
 - > Estimating probabilities
 - > Balancing diversity and likelihood of success spread your risk

2

- · Interpreting models to guide design
- · Illustrative example
 - > Focussing resources in hit-to-lead/lead optimisation
- Conclusion

Are We Doing Drug *Design*?

"Around 15,000 samples are generated each week for LC-MS/MS analysis....This analytical capacity and speed is pivotal in facilitating the rapid data turn round times required for our discovery customers"

Kenneth Saunders & High Throughput ADME Team

Pfizer Global R&D, Sandwich, Kent

Advancing Drug Discovery conference, Seattle, Sept 2006

mensa

5

An Analogy of Drug Design The Boeing 777*

* Selick et al. Drug Disc. Today, 7, pp. 109-116 (2002)

- Designed entirely on computer
- Full-scale prototype built
- Successfully flown first time
- Compared with the "crash test" paradigm of drug discovery

6

- Uniquely among casino games, the outcome of a Blackjack hand is, to some degree, predictable
- The cards that have been dealt and discarded define the probabilities of drawing cards in the future
- High cards (10 through Ace) favour the player over the dealer
- Card counters use this information to bias the odds in their favour
- N.B. This is not a recommendation of card counting, it may be illegal in some jurisdictions.

* Bringing Down the House, Ben Mezrich

ولح

Conclusions

- Models of drug properties (potency, ADMET, physicochemical properties...) are not yet sufficiently accurate to enable a true drug design paradigm
- However, despite these shortcomings models may be used to achieve many of the efficiencies of drug design
 - > Focus resources on chemistry that is most likely to succeed
 - > Guide the design of new molecules through interpretation of SAR/docking
- Rather than focus on the properties of single molecules, models may be used to bias the odds of success by focussing on areas of chemistry most likely to yield a successful drug

matt.segall@glpg.com

38

Acknowledgements

- •ADMET group at BioFocus DPI
 - ► Alan Beresford
 - ► Ed Champness
 - ➤ Steve Clifton
 - ▶Kelly Dong
 - ➤ Nick Foster
 - ➤ Joelle Gola
 - ➤ Andre Kramer
 - ▶ Chris Leeding

- ➤ Dave McCormick
- ➤ Darren Metcalf
- ➤Olga Obrezanova
- ▶Parmdeep Sandhu
- ➤ Elaine Tate
- ➤Yvonne Walker
- ➤ Dawn Yates

matt.segall@glpg.com

