

Data is Like Paint... It Does No Good Until it is Applied ACS Fall Meeting 2018 Matthew Segall – matt@optibrium.com

© 2018 Optibrium Ltd Optibrium™, StarDrop™, Auto-Modeller™, Card View™ and Glowing Molecule™ are trademarks of Optibrium Ltd

Overview Confidence

- Making decisions based on data
 - Uncertainty everywhere!
- How good do our models need to be?
- Conclusions

Knowledge is like paint... It does no good until it is applied

- Doe Zantamata

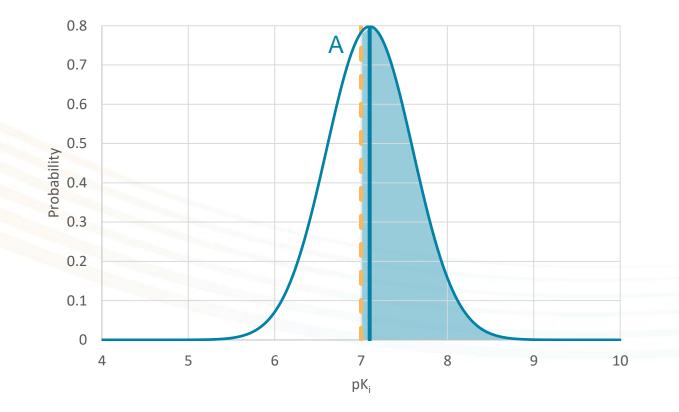
Sources of Uncertainty Statistical

- Experimental variability/error
 - Single measurements: assay variability
 - o $pK_i/pIC_{50} \approx 0.3 0.7 \log units$ (factor of 2-5 in K_i/IC_{50})
 - Multiple replicates: mean and standard error in mean
- Statistical uncertainty in predictions
 - Standard error of prediction (assessed from validation)
 o logP ~ 0.4 -0.5 log units
 - o logS \sim 0.7 0.8 log units
 - o $pK_i \approx 0.9 1.0 \log units$
 - Need to consider domain of applicability

Sources of Uncertainty Statistical

- Measured pK_i of compound A: $x_A = 7.1 \pm 0.5 (1 \text{ SD})$
- Does compound A meet criterion pK_i > 7 (better than 100 nM)?

 $X_A \sim N(x_A, \sigma^2) = N(7.1, 0.25)$ $\Rightarrow P(X_A > 7) = 0.58$

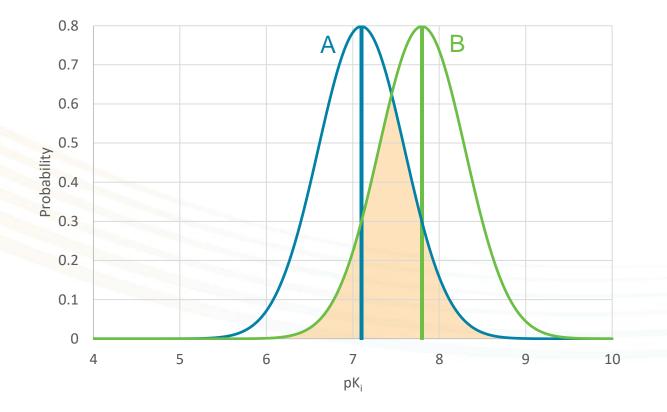


Sources of Uncertainty Statistical

- Measured pK_i of compound B : $x_B = 7.8 \pm 0.5$
- Is compound B 'better' than compound A?

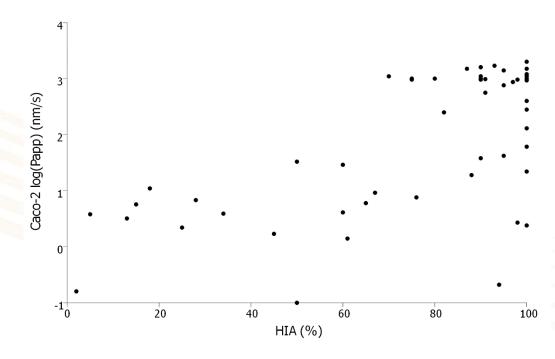
$$(X_B - X_A) \sim N(x_B - x_A, \sigma_A^2 + \sigma_B^2)$$

= N(0.7,0.5)
$$\Rightarrow P(X_B > X_A) = 0.84$$



Sources of Uncertainty Relevance

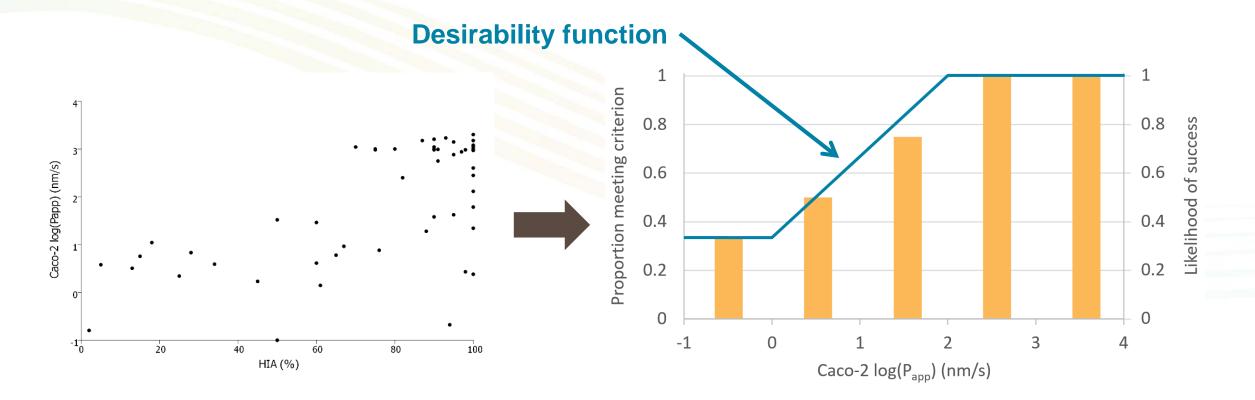
- All sources of data in drug discovery are models of the ultimate human patient
 - In vivo, in vitro or in silico
 - Inference/translation
- For example, Caco-2 permeation (model of absorption):



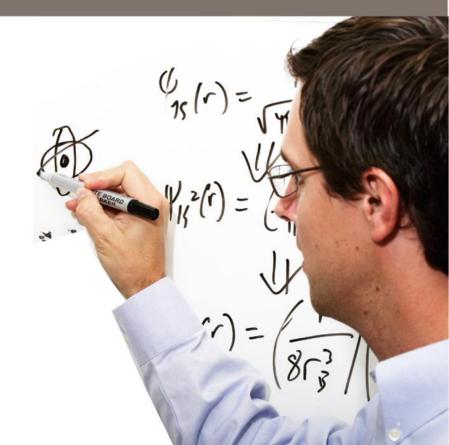
Irvine et al. (1999) J. Pharm. Sci. 88 pp. 28-33

Sources of Uncertainty Relevance

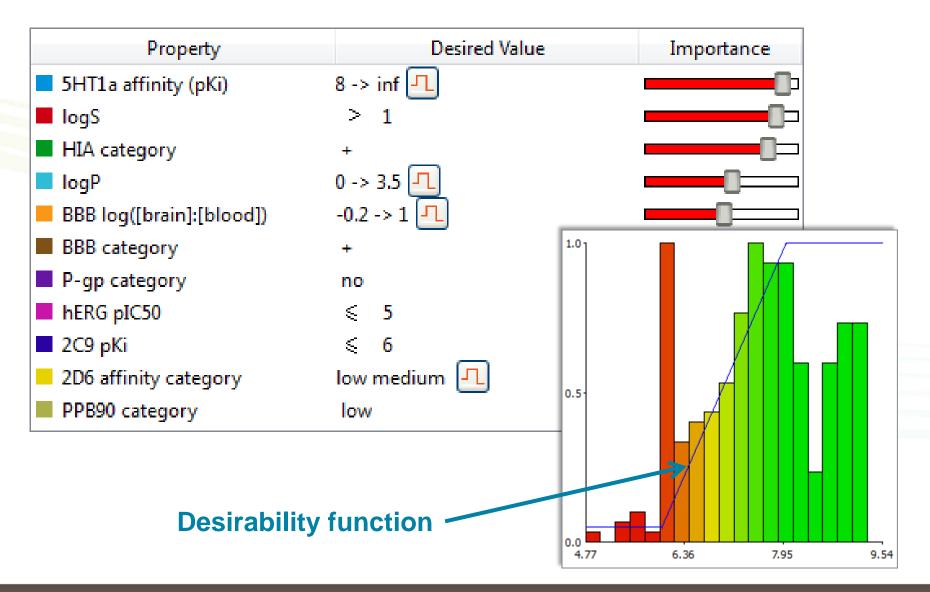
- What is the impact of data on a compound's chance of success?
 - E.g. What is chance of a compound achieving human intestinal absorption (HIA) > 50%



Bringing it Together



Probabilistic Scoring Scoring Profile

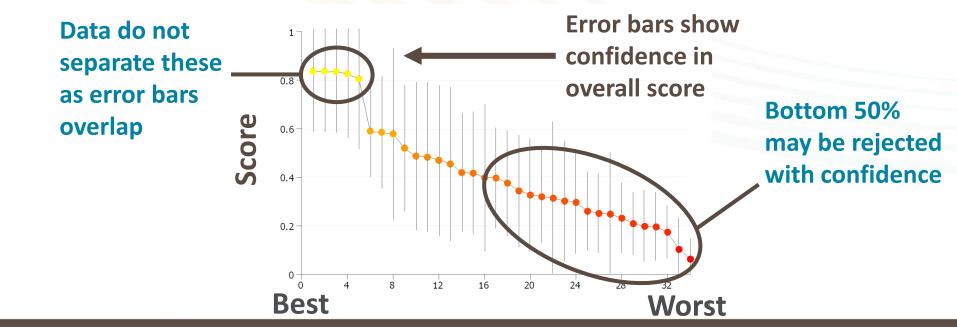


© 2018 Optibrium Ltd. Segall (2012) Curr. Pharm. Des. 18(9) pp. 1292-1310

Probabilistic Scoring

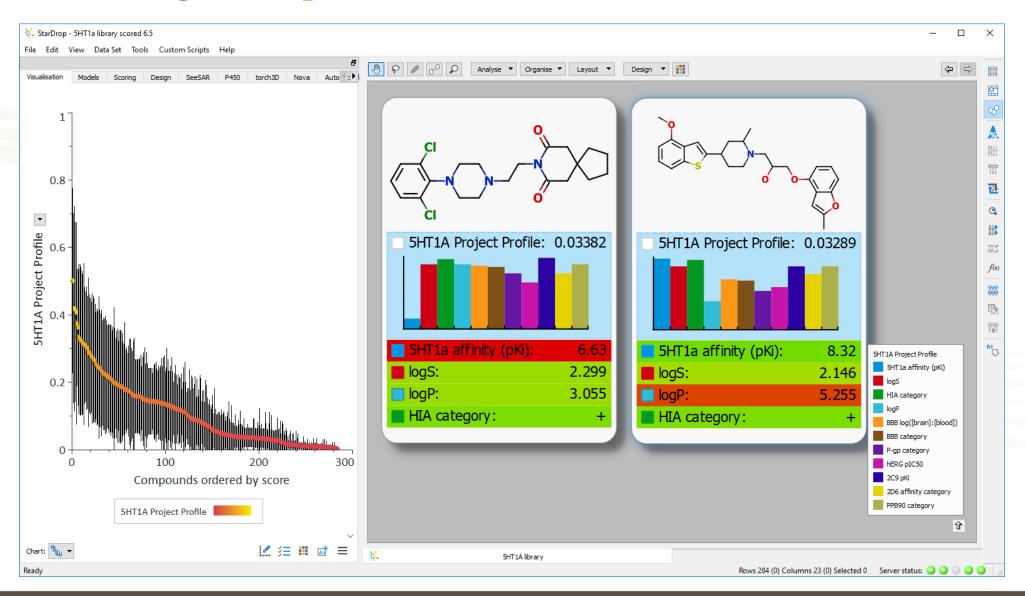
- Experimental or predicted
- Criteria for success
 - Relative importance
- Uncertainties in data
 - Experimental or statistical

Score (Likelihood of Success) Confidence in score



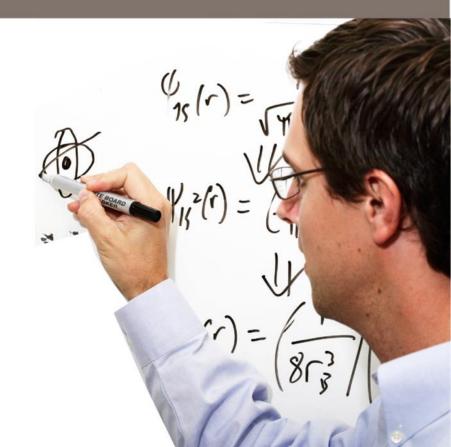
© 2018 Optibrium Ltd. Segall (2012) Curr. Pharm. Des. 18(9) pp. 1292-1310

Probabilistic Scoring Guide redesign to improve chance of success



© 2018 Optibrium Ltd. Segall (2012) Curr. Pharm. Des. 18(9) pp. 1292-1310

Example



Compound Prioritisation Hard Cut-offs

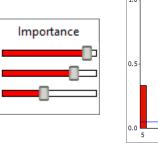
Property		Desired Value	Importance
Potency (pKi)	>	7	
log Selectivity	>	1	0
log Solubility (uM)	>	2	0

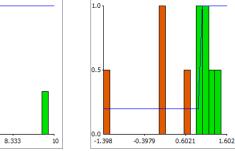
Compound	Potency (pKi)	log Selectivity	log Solubility (uM)
Α	10	0.6	1.8
В	7.3	0.9	3.7
с	7.2	0	1.5
D	7	1	2
E	6.9	1.1	1
F	6	1.3	1.7
G	5.9	1	2.4
н	5.8	1.6	1.9
Ι	5	-1.4	3.9
J	7.1	?	3.2

© 2018 Optibrium Ltd. Segall and Champness (2015) J. Comp.-Aided Mol. Des. 29(9), pp. 809-816

Compound Prioritisation Desirability Functions

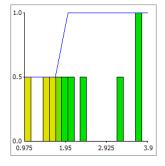
Property	Desired Value	Import
	7 -> inf	
log Solubility (uM)	2 -> inf 🔨	





3.2

?



Compound	Potency (pKi)	log Selectivity	log Solubility (uM)	Score
D	7	1	2	1
E	6.9	1.1	1	0.4
В	7.3	e.0	3.7	0.22
A	10	0.6	1.8	0.14
С	7.2	0	1.5	0.11
G	5.9	1	2.4	0.05
н	5.8	1.6	1.9	0.042
F	6	1.3	1.7	0.027
Ι	5	-1.4	3.9	0.01

?

7.1

6.667

Filter

Compound	Potency (pKi)	log Selectivity	log Solubility (uM)
A	10	0.6	1.8
В	7.3	0.9	3.7
с	7.2	0	1.5
D	7	1	2
E	6.9	1.1	1
F	6	1.3	1.7
G	5.9	1	2.4
н	5.8	1.6	1.9
I	5	-1.4	3.9
J	7.1	?	3.2

© 2018 Optibrium Ltd. Segall and Champness (2015) J. Comp.-Aided Mol. Des. 29(9), pp. 809-816

J

Compound Prioritisation Probabilistic Scoring

Filter

log Selectivity

1

1.1

1.3

1

1.6

?

Compound

Δ

В

С

D

Е

F

G

н

Ι

Potency (pKi)

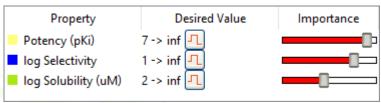
10

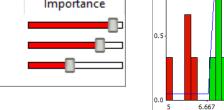
7.3

7.2

7

7.1





1.0

$$\sigma_{\mathsf{pKi}} = 0.3, \sigma_{\mathsf{Sel}} = 0.4, \sigma_{\mathsf{logS}} = 0.6$$

log Solubility (uM)

3.7

2

2.4

3.9

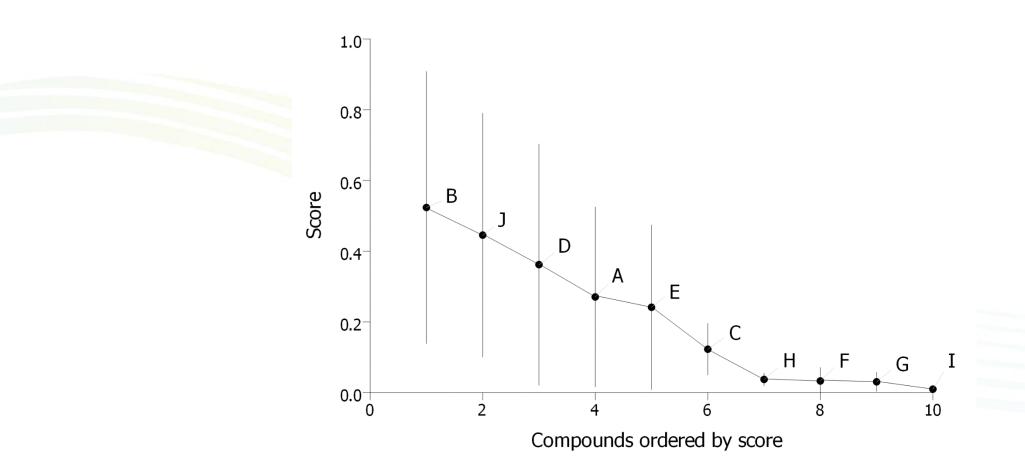
3.2



$4, \sigma_{\log S} = 0.6$				Compound	Potency (pKi)	log Selectivity	log Solubility (uM)	Score			
		0				В	7.3	0.9	3.7	0.52	
						J	7.1	?	3.2	0.49	
Desirability Function				D	7	1	2	0.36			
	Compound D	Potency (pKi)	log Selectivity	log Solubility (uM)		А	10	0.6	1.8	0.27	
	E	6.9	1.1	1	0.4	E	6.9	1.1	1	0.24	
	В	7.3	0.9	3.7	0.22	с	7.2	0	1.5	0.12	
	A C	10 7.2	0.6	1.8	0.14	н	5.8	1.6	1.9	0.038	
	G	5.9	1	2.4	0.05	F	6	1.3	1.7	0.033	
	F	5.8	1.6	1.9	0.042	G	5.9	1	2.4	0.031	
	I	5	-1.4	3.9	0.01	I	5	-1.4	3.9	0.01	
	J	7.1	?	3.2	?						

© 2018 Optibrium Ltd. Segall and Champness (2015) J. Comp.-Aided Mol. Des. 29(9), pp. 809-816

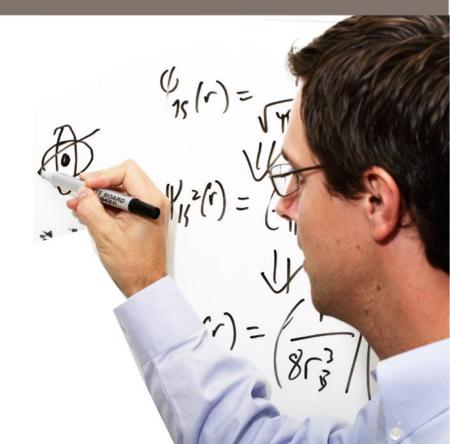
Score Distribution



Conclusion: Only compounds H, F, G and I can be confidently rejected...

© 2018 Optibrium Ltd. Segall and Champness (2015) J. Comp.-Aided Mol. Des. 29(9), pp. 809-816

How Good to Our Models Have to Be?



How Well Does This Model Conserve Your Options?

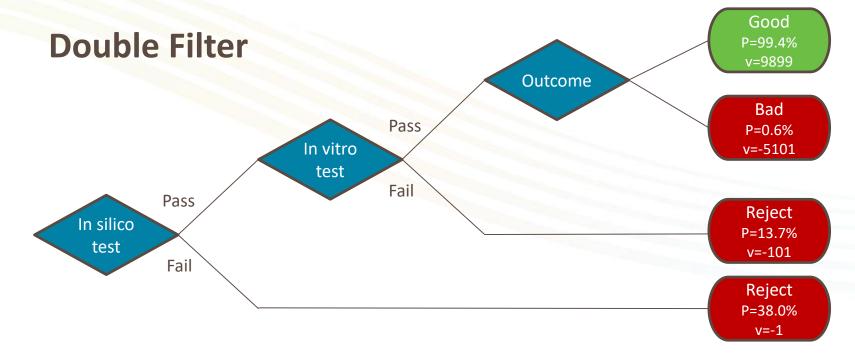
- You are considering purchasing a library of compounds:
 - You expect 1% of your compounds have a particular kind of toxicity

Prior

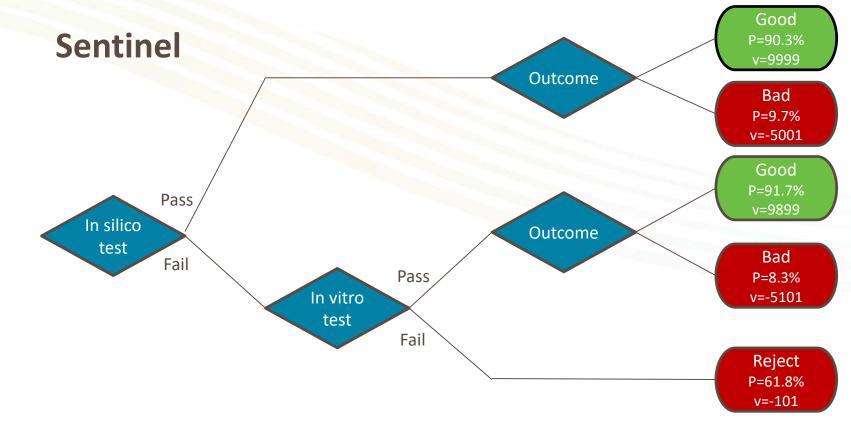
- You apply a model to all the compounds that is 90% reliable (both 90% sensitive and 90% specific)
- What percentage of the compounds that are predicted to fail, genuinely have the toxicity?
 - a) About 1%
 - b) About 2%
 - c) About 10%
 - d) About 50%
 - e) About 90%
- Answer?
 - c) Of 1000 compounds, 990 x 0.1 + 10 x 0.9 = 108 would be reported as toxic by the model, of which only 9 really are toxic.
- Easy to overreact to negative results
 - Availability bias (neglect of the prior)*

- Two screens for property: in silico and in vitro
 - In silico: cost 1, accuracy 80%
 - In vitro: cost 100, accuracy 95%
 - Cost to prove in vivo 5,000
 - Net value of good compound 10,000
- 5 Possible screening strategies

- Two screens for property: *in silico* and *in vitro*
- 5 Possible screening strategies:



- Two screens for property: *in silico* and *in vitro*
- 5 Possible screening strategies:



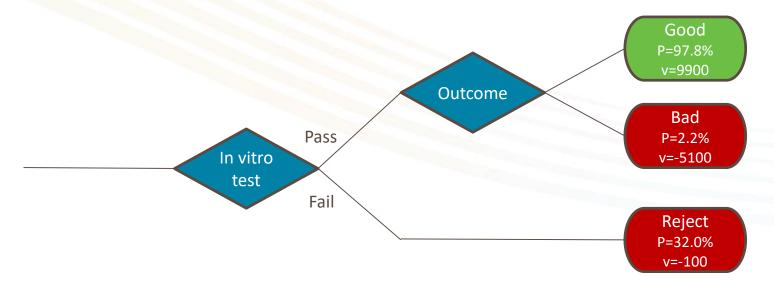
© 2018 Optibrium Ltd. Segall and Chadwick (2010) J. Comp.-Aided Mol. Des. 24(12) pp. 957-960

- Two screens for property: *in silico* and *in vitro*
- 5 Possible screening strategies:

In Silico Only

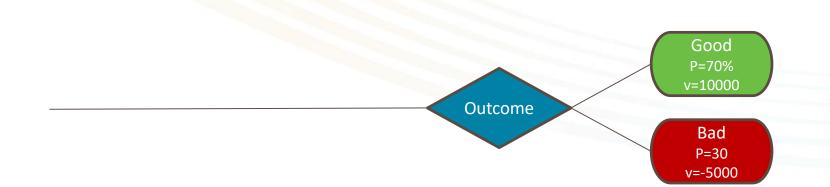
- Two screens for property: *in silico* and *in vitro*
- 5 Possible screening strategies:

In Vitro Only



- Two screens for property: *in silico* and *in vitro*
- 5 Possible screening strategies:

No Screen



- Parameters:
 - In silico: cost 1, accuracy 80%
 - In vitro: cost 100, accuracy 95%
 - Cost to confirm 5,000; Net value of good compound 10,000

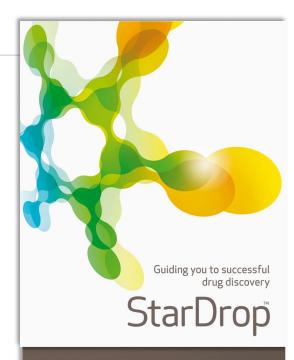
Strategy	Value	Value		
	(Prior for risk 30%)	(Prior for risk 40%)		
Double filter	5242	4483		
Sentinel	6531	5415		
<i>In silico</i> only	5299	4399		
<i>In vitro</i> only	6475	5500		
No screen	5500	4000		

Interactive example http://www.tessella.com/screening-strategy-explorer

© 2018 Optibrium Ltd. Segall and Chadwick (2010) J. Comp.-Aided Mol. Des. **24**(12) pp. 957-960

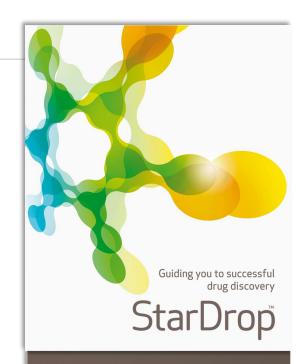
Conclusions

- Data only add value when used to make good decisions in the context of a discovery project
- The value of data can only be assessed when we understand its confidence
 - Avoid wasted effort and missed opportunities
- We can only know if our assays/models add value when we know the priors for the risks we are addressing
 - BIG opportunity for pre-competitive collaboration
- For more information and references, please visit:
 - www.optibrium.com/stardrop/
 - www.optibrium.com/community/



Acknowledgements

- The Optibrium team, in particular Ed Champness
- Andrew Chadwick (formerly of Tessella)



optibrium