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Automatic model generation

• The rapid design-test-redesign cycle of modern drug 
discovery demands fast model building

• Automatic modelling processes allow

� exploring large numbers of modelling approaches efficiently
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� exploring large numbers of modelling approaches efficiently

� making QSAR model building accessible to non-experts



Talk Outline

• Automatic Model Generation process (AMG)

� Stages of the process

� Gaussian Processes modelling techniques

• ‘Manual’ model versus ‘automatic’ 
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• ‘Manual’ model versus ‘automatic’ 

� Blood-brain barrier penetration

� Aqueous solubility 

• Building QSAR model to guide drug design



Automatic Model Generation 
Process
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Automatic model generation

• Splitting data into training, validation 
and test sets (by cluster analysis)

• Descriptor calculation and filtering 
(2D SMARTS, logP, TPSA, MW, charge 
etc.)

Data set

trn val test
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etc.)

• Modelling techniques (PLS, Radial 
Basis Functions with genetic algorithm, 
Gaussian Processes, Decision Trees)

• Selection of the best model by 
performance on the validation set 

• Test set is an independent set

Build
models

PLS

RBF

GPs

Best
model

Evaluate 
multiple 
models

Test the 
best 
model



Automatic model generation

Data set

trn val test

New compounds
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Modelling techniques: Gaussian 
Processes

• A machine learning method based on Bayesian approach 

• Advantages:

� Does not require a priori determination of model parameters 

� Nonlinear relationship modelling  
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� Nonlinear relationship modelling  

� Built-in tool to prevent overtraining - no need for cross-validation

� Inherent ability to select important descriptors 

� Provides uncertainty estimate for each prediction

• Sufficiently robust to enable automatic model generation



Modelling techniques: Gaussian 
Processes
• Define prior distribution over 
functions (controlled by 
hyperparameters, covariance function 
– ARD function)

• Posterior distribution: retain 

f(x)

x

Functions from the 
prior distribution
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• Posterior distribution: retain 
functions which fit experimental data

• Prediction is the mean of posterior 
distribution.

• Standard deviation of the distribution 
provides estimate of the uncertainty 
in prediction

x

f(x)

x

Functions from the 
posterior



‘Automatic’ models versus 
‘manual’

Applications: 
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blood-brain barrier penetration

and aqueous solubility



Blood-brain barrier penetration (logBB)

• Data set of 151 compounds with logBB values (collected 
from literature)  

• ‘Manually’ built model (random set split TRN=108, TEST=43)

• Build a model by the automatic model generation (AMG) 
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• Build a model by the automatic model generation (AMG) 
process (apply to all 151 compounds)

• Compare ‘automatic’ and ‘manual’ models by testing on 
external data 

� 143 compounds from ‘Abraham’ set not present in the initial set
(Abraham et al. J.Pharm. Sci., 2006, 95)



Blood-brain barrier penetration (logBB)

• ‘Manual’ model 

� 2D SMARTS descriptors reduced by FVS, 
various modelling techniques (PLS, RBF, MLR) –
performance supervised on test set

� Final model is built by Radial Basis Functions on 

Test set

R² 0.73

RMSE 0.36 

manual
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� Final model is built by Radial Basis Functions on 
7 descriptors (logP, flexibility, charge, hydrogen 
bonding…)

• ‘Automatic’ model

� cluster at t=0.7, val=23 comp, test=22 comp

� Best model by GP with nested sampling

� 162 descriptors

Val+Test  set

R² val 0.72

R² test 0.66

RMSE 0.44 

automatic



Blood-brain barrier penetration 
Performance on external ‘Abraham’ test set

Model RMSE 
pred

% pred within 
±0.4 log unit

% pred within 
±0.8 log unit

R² r²corr RMSE

manual 0.36 62.9 93.0 0.39 0.44 0.44

automatic 0.44 63.6 90.9 0.27 0.36 0.49
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Automatic rebuilding logBB model to 
include new data
• Original 151 compounds and 143 compounds 
from ‘Abraham’ set

• Best model – GP with 2Dsearch on 167 
descriptors:

Set N R² RMSE

TRN 205 0.80 0.29
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• Improvement in prediction of 30 compounds 
from ‘Abraham’ set, now in val and test sets:  

� current model – RMSE=0.27

� previous automatic model – RMSE=0.44  

TRN 205 0.80 0.29

VAL 44 0.73 0.33

TEST 43 0.67 0.35
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Aqueous solubility

• 3313 compounds with intrinsic 
aqueous solubility (logS, S in µM)

� from PHYSPROP database (Syracuse Research 

Corporation, SRC)

Test set

R² 0.82

RMSE 0.79 

manual

14

• Automatic model produced by 
Gaussian Processes with 2D search

• External test data – 564 compounds 
from ‘Huuskonen’ set 

� Huuskonen J., J. Chem. Inf. Comput. Sci., 
2002, 42

Val+Test  set

R² val 0.84

R² test 0.85

RMSE 0.69 

automatic



Aqueous solubility  
Performance on external ‘Huuskonen’ test set

Model Desc % pred within 
±0.7 log unit

% pred within 
±1.4 log unit

R² r²corr RMSE

manual 108 39.9 70.9 0.68 0.80 1.28

automatic 166 54.1 85.9 0.82 0.86 0.96
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Building QSAR model to guide 
drug design
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Case Study



Building QSAR model to guide drug 
design

• The automatic model generation  
algorithm is implemented in the 
StarDrop environment for decision 
support in drug discovery and is 
referred to as the Auto-Modeler

Build 
Model

Data
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• QSAR models can be used to predict 
new compounds together with the 
Glowing Molecule visualisation tool

• Interpret SAR and guide redesign of 
compounds to overcome liabilities

Predict
‘Glow’ 
Learn
Design



The ‘Glowing Molecule’: 
visualisation tool 

• Makes a link between predicted 
property and compound’s structure 

�“Why is a property value 
predicted?”

�“Where can I change this 
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�“Where can I change this 
property?”

�Interpret SAR

�Guide efficient redesign of 
molecules

• No-more ‘black box’ models!

logP property



Building QSAR model to guide drug 
design
• QSAR model for Target X affinity

� 138 compounds with pKi data from screening against ‘Target X’

� Apply Auto-Modeler  

The best QSAR model of affinity:
Set R² RMSE
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• Predicting affinity

� Additional experimental affinity data for 10 new compounds  

� Model predictions correlate very well with the experimental data 
R²=0.98, RMSE=0.22

Set R² RMSE

VAL 0.96 0.23

TEST 0.95 0.29



Building QSAR model to guide drug 
design
• Need to have balance of potency and ADME properties, 
hence incorporate predictions from StarDrop ADME models 
(logS, hERG, BBB, HIA, PPB, logP, 2C9 affinity, pgp …)

• Apply probabilistic scoring – all compound data integrated to 
allow prioritization
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allow prioritization

• Score new molecules against project profile  

� Scoring profile is for an orally bioavailable, potent molecule for a non-
CNS target (incorporates desired project criteria and their importance)

• Resulting score estimates each compound’s likelihood of 
success against the project profile



Building QSAR model to guide drug 
design
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Building QSAR model to guide drug 
design

Exp. pKi=4.60 
Pred. pKi=4.65 
Score=0.12

Exp. pKi=6.22 
Pred. pKi=6.18 
Score=0.05

A para-substituted 
phenyl has positive 
influence to the 
high affinity
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Compound for 
redesign

Exp. pKi=3.73 
Pred. pKi=3.72 
Score=0.04

New 
compound

Exp. pKi=n/a  
Pred. pKi=5.24 
Score=0.32

Adding a para-
substituted phenyl  
improved affinity 
and increased the 
total score 



Conclusions

• Described the automatic model generation process for QSAR 
modelling

• The process was applied to modelling blood-brain barrier 
penetration and aqueous solubility
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• Automatic models compare well to ones built manually. The 
automatic process is robust, much quicker than manual 
building and can be applied by non-experts

• The case study demonstrates how building a QSAR model 
can help to understand SAR for a chemical series and 
redesign compounds to overcome liabilities 
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Spare slides
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Gaussian Processes: Hyperparameters

• Learning the Gaussian Process  ~ finding hyperparameters

� Optimize the marginal log-likelihood (prevents overtraning, no need 
for validation set)

• Techniques for finding hyperparameters

� “Fixed” values for length scales. Search for noise parameter 
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� “Fixed” values for length scales. Search for noise parameter 

� Forward variable selection provides feature selection 

� Optimization by conjugate gradient methods

� Length scales show which descriptors are most relevant 

� Nested sampling 

� Search in the full hyperparameter space  

� Search does not get trapped in local maxima   
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Modelling techniques. Gaussian 
Processes

• Learning the Gaussian Process  ~ 
finding hyperparameters

� Length scale parameters (one for each 
descriptor)            identification of relevant 
descriptors

� Noise parameter 

Length scale =0.6
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� Noise parameter 

• Find hyperparameters by optimizing 
the marginal log-likelihood

� It controls the trade-off between the model 
complexity and fit to the data                 
no need for cross-validation, prevents 
overfitting, does not require user 
intervention

Length scale =1.2



Gaussian Processes for binary 
classification

• Introduce ‘latent’ variable 
a(x);  model it by GP

• Latent function a(x) can be 
turned to probability by 

following transformation

0
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following transformation

• Obtain two approximations 
for class probability

descriptor
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Gaussian Processes for binary 
classification

• We used an approximation method of lower and upper 
variational bounds (Gibbs and Mackay, 1997) 

� provides approximations for class probability (lower and upper bounds  
– 2 approximations)
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• Learning the classifier 

� Optimization of parameters: hyperparameters (as in  GP regression) 
and variational parameters

� Techniques: conjugate gradient optimization, nested sampling

� Number of parameters ~  (#descriptors) + 2 (#compounds)


