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Automatic model generation

» The rapid design-test-redesign cycle of modern drug
discovery demands fast model building

» Automatic modelling processes allow

» exploring large numbers of modelling approaches efficiently

» making QSAR model building accessible to non-experts
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Talk Outline

» Automatic Model Generation process (AMG)

» Stages of the process

» Gaussian Processes modelling techniques

* ‘Manual’ model versus ‘automatic’

» Blood-brain barrier penetration

» Agueous solubility
» Building QSAR model to guide drug design
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Automatic Model Generation
Process
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Automatic model generation
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» Splitting data into training, validation
and test sets (by cluster analysis)

 Descriptor calculation and filtering
(2D SMARTS, logP, TPSA, MW, charge
etc.)

» Modelling techniques (PLS, Radial
Basis Functions with genetic algorithm,
Gaussian Processes, Decision Trees)

» Selection of the best model by
performance on the validation set

» Test set is an independent set
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Automatic model generation
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Modelling techniques: Gaussian
Processes

* A machine learning method based on Bayesian approach

* Advantages:
» Does not require a priori determination of model parameters
» Nonlinear relationship modelling
» Built-in tool to prevent overtraining - no need for cross-validation
» Inherent ability to select important descriptors

» Provides uncertainty estimate for each prediction

» Sufficiently robust to enable automatic model generation
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Modelling techniques: Gaussian

Processes \ Functions from the
prior distribution

» Define prior distribution over /

functions (controlled by f(x)

hyperparameters, covariance function

— ARD function)

v

» Posterior distribution: retain

functions which fit experimental data ”

[

e _ * Functions from the
 Prediction is the mean of posterior posterior

distribution.

» Standard deviation of the distribution ()
provides estimate of the uncertainty
in prediction

X
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‘Automatic’ models versus
‘manual’

Applications:
blood-brain barrier penetration
and aqueous solubility
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Blood-brain barrier penetration (logBs)

o Data set of 151 compounds with logBB values (collected
from literature)

e ‘Manually’ built model (random set split TRN=108, TEST=43)

» Build a model by the automatic model generation (AMG)
process (apply to all 151 compounds)

» Compare ‘automatic’ and ‘manual” models by testing on
external data

» 143 compounds from ‘Abraham’ set not present in the initial set
(Abraham et al. J.Pharm. Sci., 2006, 95)
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Blood-brain barrier penetration (logss)

manual

e ‘Manual’ model

» 2D SMARTS descriptors reduced by FVS,
various modelling techniques (PLS, RBF, MLR) —
performance supervised on test set

» Final model is built by Radial Basis Functions on

/ descriptors (logP, flexibility, charge, hydrogen _
bonding...) automatic

0.73
0.36

e ‘Automatic” model
» Cluster at t=0.7, val=23 comp, test=22 comp
» Best model by GP with nested sampling
» 162 descriptors
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Blood-brain barrier penetration
Performance on external ‘Abraham’ test set
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Automatic rebuilding logBB model to
include new data

* Original 151 compounds and 143 compounds

from ‘Abraham’ set
» Best model — GP with 2Dsearch on 167 o H& w
descriptors: 3 ﬁ : |
g
S | } ~
gl
» Improvement in prediction of 30 compounds T observed IO;gBiB
from ‘Abraham’ set, now in val and test sets:
» current model — RMSE=0.27 val set in red
> previous automatic model — RMSE=0.44 test set in blue
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Aqueous solubility

manual

» 3313 compounds with intrinsic
aqueous solubility (logS, S in uM)

» from PHYSPROP database (Syracuse Research
Corporation, SRC)

0.82
0.79

» Automatic model produced by
Gaussian Processes with 2D search

automatic

» External test data — 564 compounds
from ‘Huuskonen’ set

» Huuskonen J., J. Chem. Inf. Comput. Sci.,
2002, 42
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Aqueous solubility
Performance on external ‘Huuskonen’ test set
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Building QSAR model to guide
drug design

Case Study
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Building QSAR model to guide drug
design

» The automatic model generation
algorithm is implemented in the
StarDrop environment for decision -

. . ) Build
support in drug discovery and is Data Model
referred to as the Auto-Modeler

* QSAR models can be used to predict
new compounds together with the
Glowing Molecule visualisation tool

Predict
» Interpret SAR and guide redesign of ‘Glow’
compounds to overcome liabilities Learn

Design
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The ‘Glowing Molecule’:
visualisation tool

» Makes a link between predicted
property and compound’s structure

»>“Why is a property value
predicted?”

»"“Where can I change this
property?”
»Interpret SAR

»Guide efficient redesign of
molecules

e No-more ‘black box’ models!

logP property
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Building QSAR model to guide drug
design
- QSAR model for Target X affinity

» 138 compounds with pKi data from screening against ‘Target X’
» Apply Auto-Modeler
The best QSAR model of affinity:

- Predicting affinity
» Additional experimental affinity data for 10 new compounds
» Model predictions correlate very well with the experimental data
R2=0.98, RMSE=0.22
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Building QSAR model to guide drug
design

» Need to have balance of potency and ADME properties,
hence incorporate predictions from StarDrop ADME models
(logS, hERG, BBB, HIA, PPB, logP, 2C9 affinity, pgp ...)

» Apply probabilistic scoring — all compound data integrated to
allow prioritization

» Score new molecules against project profile

» Scoring profile is for an orally bioavailable, potent molecule for a non-
CNS target (incorporates desired project criteria and their importance)

» Resulting score estimates each compound’s likelihood of
success against the project profile
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Bundmg QSAR model to guide drug

b StarDrop - [AffinityDataZ]
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Building QSAR model to guide drug
design

A para-substituted
phenyl has positive
influence to the
high affinity

Exp. pKi=4.60
Pred. pKi=4.65
Score=0.12

Exp. pKi=6.22
Pred. pKi=6.18
Score=0.05

Compound for New ; Adding a para-
redesign compoun substituted phenyl
Exp. pKi=3.73 Exp. pKi=n/a improved affinity
Pred. pKi=3.72 Pred. pKi=5.24 and increased the
Score=0.04 Score=0.32 total score
StarDrop BioFocus DPI
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Conclusions

Described the automatic model generation process for QSAR
modelling

The process was applied to modelling blood-brain barrier
penetration and aqueous solubility

Automatic models compare well to ones built manually. The
automatic process is robust, much quicker than manual
building and can be applied by non-experts

The case study demonstrates how building a QSAR model
can help to understand SAR for a chemical series and
redesign compounds to overcome liabilities
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Gaussian Processes: Hyperparameters

» Learning the Gaussian Process ~ finding hyperparameters

» Optimize the marginal log-likelihood (prevents overtraning, no need
for validation set)

» Techniques for finding hyperparameters
» “Fixed” values for length scales. Search for noise parameter
» Forward variable selection provides feature selection

» Optimization by conjugate gradient methods
= Length scales show which descriptors are most relevant
» Nested sampling

puewap |euoneindwod

= Search in the full hyperparameter space
= Search does not get trapped in local maxima
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Modelling techniques. Gaussian
Processes

Length scale =0.6

* Learning the Gaussian Process ~
finding hyperparameters

» Length scale parameters (one for each
descriptor) == identification of relevant
descriptors

|
= Jl o~ Jlo= o W

» Noise parameter

* Find hyperparameters by optimizing
the marginal log-likelihood

» It controls the trade-off between the model
complexity and fit to the data ==
no need for cross-validation, prevents
overfitting, does not require user
intervention

|
= J ™ U= o W
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Gaussian Processes for binary
classification

» Introduce latent’ variable ~ fremt 4
a(x); model it by GP ;
» Latent function a(x) can be ,
turned to probability by 4|
following transformation i
1 1 R
P(y=1[Xx a(x)) = , A
(y=1x800) == 5 /\/
Class ] |
- Obtain two approximations  Probabilities |
for class probability o - e

descriptor
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Gaussian Processes for binary
classification

» We used an approximation method of lower and upper
variational bounds (Gibbs and Mackay, 1997)

» provides approximations for class probability (lower and upper bounds
— 2 approximations)

e Learning the classifier

» Optimization of parameters: hyperparameters (as in GP regression)
and variational parameters

» Techniques: conjugate gradient optimization, nested sampling

» Number of parameters ~ (#descriptors) + 2 (#compounds)
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