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Expected Uniform Random Performance 
When evaluating the expected success rates for uniform random chance, the number of isoforms 

associated with the metabolism of a compound and which top-k criterion is used need to be taken 

into account. Table S1 shows the probability for random success based upon these two factors. 

Table S1. Probabilities of achieving a successful top-k result with a uniform random selection, depending on the number 

of observed isoforms for a compound. 

 Top-1 Top-2 Top-3 

Single isoform 1/7 = 0.14 1-(6/7*5/6) = 0.28 1-(6/7*5/6*4/5) = 0.42 

2 isoforms 2/7 = 0.28 1-(5/7*4/6) = 0.52 1-(5/7*4/6*3/5) = 0.71 

3 isoforms 3/7 = 0.42 1-(4/7*3/6) = 0.71 1-(4/7*3/6*2/5) = 0.88 

4 isoforms 4/7 = 0.57 1-(3/7*2/6) = 0.85 1-(3/7*2/6*1/5) = 0.97 

5 isoforms 5/7 = 0.71 1-(2/7*1/7) = 0.96 1.00 

 

The probabilities in the top-2 and top-3 cases are calculated as the 1 – (probability of failing) and, as 

one might expect, if you have a list of 4 isoforms and are allowed 3 guesses then there is only a very 

small chance that one could get the prediction wrong. Hence, for isoform lists that are longer than 4 

isoforms one is assured of success if given enough guesses. Also, as the test set composition 

changes, the distribution of compounds with either 1, 2, 3, 4 or 5 associated isoforms will vary. 

Therefore, the Expected Uniform Random results will vary for each test set and are calculated by 

multiplying the numbers of compounds with each length of isoform list by the probabilities in Table 

S1 to produce the expected number of compounds to be successfully predicted by random. The 

figures for each data set split are then averaged to produce the figures listed in Table 1 of the paper. 

The Expected Uniform Random AUC on a ROC curve is 0.5 by definition (random is effectively the 

equal likelihood of picking a true positive over a false positive and hence is a diagonal line from the 

bottom left to top right corner of a ROC plot). One can demonstrate this within this data set by 

examining the case where a single major isoform is associated with a compound, the AUC values for 
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picking the correct isoform on the first, second, third, etc guess are 1, 5/6, 4/6, 3/6, 2/6, 1/6, 0 

respectively. Summing the possible AUC values and multiplying by the equal probability of each 

outcome gives (21/6)*1/7 = 3/6 = 0.5. The AUC values can be calculated for every possible isoform 

selection scenario and number of major isoforms for a compound in a similar fashion and again the 

average AUC can be shown to be 0.5. 

Performance Including Minor Isoforms 
The inclusion of minor observed isoforms in the test set compounds produces the distributions of 

numbers of isoforms associated with each compound shown in Figure S1. 

 

 

Figure S1. Distributions of the numbers of isoforms identified as major or minor metabolising enzymes for each 

compound in each test set split. The shading of the bars in each group indicates the 5 different test set splits. 

Note the fact that the number of compounds with only 1 isoform has halved in these test sets 

compared to the test sets containing only major isoform information. The number of compounds 

with 3 or more isoforms has risen sharply and there are a small number of compounds associated 

with all 7 isoforms. 

Figure S2 shows the distribution of observed isoforms when the minor isoforms are included for the 

test set compounds. Again, the CYPs are ordered by the frequency order as noted in Zanger et al. 

and one can see that the frequencies for the CYPs are now more in line with that seen by Zanger 

with the most frequent on the left to the least on the right. 

 



 

Figure S2. Distributions of the numbers of compounds metabolised by each isoform across the different test sets, when 

minor isoforms are included. The CYP450s are coloured consistently with Figure 2 and ordered by the frequency with 

which they are observed to metabolise marketed drugs, from the most common (left) to least common (right), as 

determined by Zanger et al.2 The graduated colours indicate the 5 different set splits  

As expected, the prediction performance increases to almost 90% for the top-1 criterion and well 

over 90% for the top-2 and top-3 criteria (as shown in Table S2), but the AUC values do not change 

significantly. This is due to the fact that missing an isoform by one place “costs” more in terms of 

AUC value when there are more isoforms listed, i.e. if a single isoform is misplaced by one place then 

the reduction in AUC value is 1/6, but if an incorrect isoform is placed ahead of isoforms from a list 

of 3 possible isoforms then the AUC value reduction is 1/4. So, as the prediction gets easier, the cost 

for making a wrong prediction gets greater. 

Table S2. Top-k (k=1-3) and AUC results on the independent test sets for the models built and tested with each of the 

training/test set splits, now with minor isoforms included. 

Set Split Top-1 
performance 

Top-2 
performance 

Top-3 
performance 

Average AUC 

1 81.7 93.5 96.8 0.85 

2 94.6 97.8 98.9 0.81 

3 82.8 93.5 97.8 0.84 

4 92.5 98.9 98.9 0.85 

5 90.3 98.9 98.9 0.84 

Average 88.4 96.5 98.3 0.84 

 

Table S3 shows comparisons between the models and the different random methods for the three 

top-k metrics and AUC. Although the chance of successful prediction has gone up with the inclusion 

of the minor isoforms, the models are still performing significantly better than any random method.  

  



Table S3 – Summary of the statistics for the top-k and ROC AUC performances of the models and the four random 

methods. For each the average and standard deviation over the five data set splits is shown when taking the minor 

isoforms also into consideration. 

Method Models Expected 
Uniform 
Random 

Uniform 
Random 

Guided 
Random 

Y-shuffled Y-
Scrambled 

Top-1 

(%) 

88.4  5.2 34.7  1.5 38.8  4.4 45.6  4.5 53.4  4.2 53.1  4.4  

Top-2 

(%) 

96.5  2.5 57.3  2.2 59.6  4.3 67.2  4.1 76.3  3.9 76.3  3.9 

Top-3 

(%) 

98.3  0.9 67.3  2.3 72.9  3.9 80.0  3.5 88.3  3.5 87.8  3.4 

AUC 0.84  0.02 0.5  0.0 0.49  0.007 0.58  0.008 0.60  0.004 0.60  0.005 

 

T-test evaluations using Excel 
To assess the significance of the results for AUC and top-k performances, the “t-test: Two sample 

assuming unequal variances” tool in the Data Analysis tool pack within Excel was used on the 

following data. 

Data 
Set 

Split 

Method AUC Top-1 Top-2 Top-3 

Split1 Model 0.86 71.00 82.80 90.30 

Split2 Model 0.87 81.70 87.10 89.20 

Split3 Model 0.86 68.80 83.90 93.50 

Split4 Model 0.93 80.60 95.70 98.90 

Split5 Model 0.91 79.60 92.50 94.60 

Split1 Yscrambled Random 0.58 24.69 46.46 58.84 

Split2 Yscrambled Random 0.63 30.67 54.56 70.03 

Split3 Yscrambled Random 0.6 31.16 49.67 63.49 

Split4 Yscrambled Random 0.61 29.81 50.29 65.56 

Split5 Yscrambled Random 0.62 28.65 49.17 64.70 

Split1 Shuffled Random 0.58 24.60 45.72 59.83 

Split2 Shuffled Random 0.62 29.43 53.33 69.03 

Split3 Shuffled Random 0.61 30.64 50.13 64.91 

Split4 Shuffled Random 0.62 29.08 49.98 65.36 

Split5 Shuffled Random 0.61 27.45 48.29 63.85 

Split1 Uniform Random 0.5 18.19 34.50 49.53 

Split2 Uniform Random 0.5 21.19 39.26 54.33 

Split3 Uniform Random 0.5 20.13 37.44 52.58 

Split4 Uniform Random 0.5 19.22 36.30 51.70 

Split5 Uniform Random 0.5 18.94 35.58 50.98 

Split1 Guided Random 0.58 22.63 42.14 58.42 

Split2 Guided Random 0.6 27.40 49.08 66.04 



Split3 Guided Random 0.58 25.69 45.47 61.69 

Split4 Guided Random 0.59 25.26 45.67 62.36 

Split5 Guided Random 0.59 24.42 44.69 61.39 

 

The comparisons of the performances across the five splits in each of the top-k and AUC criteria 

were made for the real versus the random methodologies. The output from each of the t-tests is 

shown below. 

AUC Models vs Uniform Random Variable 1 Variable 2 

Mean 0.5 0.886 

Variance 0 0.00103 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 4  
t Stat -26.89389435  
P(T<=t) one-tail 5.68217E-06  
t Critical one-tail 2.131846786  
P(T<=t) two-tail 1.13643E-05  

t Critical two-tail 2.776445105  

   

   

AUC Models vs Guided Random Variable 1 Variable 2 

Mean 0.588 0.886 

Variance 7E-05 0.00103 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 5  
t Stat -20.0911559  
P(T<=t) one-tail 2.82352E-06  
t Critical one-tail 2.015048373  
P(T<=t) two-tail 5.64703E-06  

t Critical two-tail 2.570581836  

   

   

AUC Models vs Y-scrambled Random Variable 1 Variable 2 

Mean 0.608 0.886 

Variance 0.00037 0.00103 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 7  
t Stat -16.61367767  
P(T<=t) one-tail 3.49653E-07  



t Critical one-tail 1.894578605  
P(T<=t) two-tail 6.99306E-07  

t Critical two-tail 2.364624252  

   

   

AUC Models vs Y-shuffled Variable 1 Variable 2 

Mean 0.608 0.886 

Variance 0.00027 0.00103 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 6  
t Stat -17.24082811  
P(T<=t) one-tail 1.21937E-06  
t Critical one-tail 1.943180281  
P(T<=t) two-tail 2.43875E-06  

t Critical two-tail 2.446911851  
 

Top-1 Models vs Uniform Random Variable 1 Variable 2 

Mean 19.53247312 76.34 

Variance 1.338130651 35.718 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 4  
t Stat -20.86704009  
P(T<=t) one-tail 1.55832E-05  
t Critical one-tail 2.131846786  
P(T<=t) two-tail 3.11665E-05  

t Critical two-tail 2.776445105  

   

   

Top-1 Models vs Guided Random Variable 1 Variable 2 

Mean 25.07913978 76.34 

Variance 3.057152041 35.718 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 5  
t Stat -18.40747153  
P(T<=t) one-tail 4.35179E-06  
t Critical one-tail 2.015048373  
P(T<=t) two-tail 8.70357E-06  

t Critical two-tail 2.570581836  



   

   

Top-1 Models vs Y-scrambled Variable 1 Variable 2 

Mean 28.996 76.34 

Variance 6.70228 35.718 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 5  
t Stat -16.25410963  
P(T<=t) one-tail 8.03535E-06  
t Critical one-tail 2.015048373  
P(T<=t) two-tail 1.60707E-05  

t Critical two-tail 2.570581836  

   

   

Top-1 Models vs Y-Shuffled Variable 1 Variable 2 

Mean 28.24 76.34 

Variance 5.43885 35.718 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 5  
t Stat -16.76521065  
P(T<=t) one-tail 6.89945E-06  
t Critical one-tail 2.015048373  
P(T<=t) two-tail 1.37989E-05  

t Critical two-tail 2.570581836  

   

Top-2 Models vs Uniform Random Variable 1 Variable 2 

Mean 36.61548387 88.4 

Variance 3.329625159 30.85 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 5  
t Stat -19.80620533  
P(T<=t) one-tail 3.03025E-06  
t Critical one-tail 2.015048373  
P(T<=t) two-tail 6.0605E-06  

t Critical two-tail 2.570581836  

   

   

Top-2 Models vs Guided Random Variable 1 Variable 2 



Mean 45.40989247 88.4 

Variance 6.177827726 30.85 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 6  
t Stat -15.79753828  
P(T<=t) one-tail 2.04007E-06  
t Critical one-tail 1.943180281  
P(T<=t) two-tail 4.08014E-06  

t Critical two-tail 2.446911851  

   

   

Top-2 Models vs Y-scrambled Variable 1 Variable 2 

Mean 50.03 88.4 

Variance 8.55065 30.85 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 6  
t Stat -13.66863379  
P(T<=t) one-tail 4.76292E-06  
t Critical one-tail 1.943180281  
P(T<=t) two-tail 9.52584E-06  

t Critical two-tail 2.446911851  

   

   

Top-2 Models vs Y-shuffled Variable 1 Variable 2 

Mean 49.49 88.4 

Variance 7.76205 30.85 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 6  
t Stat -14.00183008  
P(T<=t) one-tail 4.13795E-06  
t Critical one-tail 1.943180281  
P(T<=t) two-tail 8.27591E-06  

t Critical two-tail 2.446911851  

   

Top-3 Models vs Uniform Random Variable 1 Variable 2 

Mean 51.82365591 93.3 

Variance 3.217248237 14.725 

Observations 5 5 



Hypothesized Mean Difference 0  
Df 6  
t Stat -21.89510541  
P(T<=t) one-tail 2.9649E-07  
t Critical one-tail 1.943180281  
P(T<=t) two-tail 5.92979E-07  

t Critical two-tail 2.446911851  

   

   

Top-3 Models vs Guided Random Variable 1 Variable 2 

Mean 61.97978495 93.3 

Variance 7.433124292 14.725 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 7  
t Stat -14.87795499  
P(T<=t) one-tail 7.42785E-07  
t Critical one-tail 1.894578605  
P(T<=t) two-tail 1.48557E-06  

t Critical two-tail 2.364624252  

   

   

Top-3 Models vs Y-scrambled Variable 1 Variable 2 

Mean 64.524 93.3 

Variance 16.19933 14.725 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 8  
t Stat -11.57085037  
P(T<=t) one-tail 1.41412E-06  
t Critical one-tail 1.859548038  
P(T<=t) two-tail 2.82823E-06  

t Critical two-tail 2.306004135  

   

   

Top-3 Models vs Y-shuffled Variable 1 Variable 2 

Mean 64.596 93.3 

Variance 10.90348 14.725 

Observations 5 5 

Hypothesized Mean Difference 0  
Df 8  



t Stat -12.67844523  
P(T<=t) one-tail 7.04193E-07  
t Critical one-tail 1.859548038  
P(T<=t) two-tail 1.40839E-06  

t Critical two-tail 2.306004135  

   
 

Main data set 
The data set (compounds and associated isoforms) has been published previously for the reference  

“Predicting Regioselectivity and Lability of Cytochrome P450 Metabolism Using Quantum 

Mechanical Simulations” - Jonathan D. Tyzack, Peter A. Hunt, and Matthew D. Segall* 

J. Chem. Inf. Model., 2016, 56 (11), pp 2180–2193 - DOI: 10.1021/acs.jcim.6b00233 

and is available in the supplementary information following the link below 

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00233 

29 Compound further external test set 
smiles name major minor 
CCC1=CC=C(CCOC2=CC=C(CC3SC(=O)NC3=O)C=C2)N=C
1 pioglitazone CYP2C8 CYP3A4 
N#CCC(C1CCCC1)[N]2C=C(C=N2)C3=C4C=C[NH]C4=NC
=N3 ruxolitinib CYP3A4  
C1CCN2C[C@@H]3C[C@@H](CN4CCCC[C@H]34)[C@
@H]2C1 sparteine CYP2D6  
N[S](=O)(=O)NCCNC1=NON=C1C(=N)NC2=CC=C(F)C(=C
2)Br epacadostat_M11 CYP3A4 

CYP2C19;
CYP1A2 

FC(F)OC(Cl)C(F)(F)F isoflurane CYP2E1  
OC(CCCN1CCC(O)(CC1)C2=CC=C(Br)C=C2)C3=CC=C(F)C
=C3 

dihydrobromperido
l CYP3A4  

OC1(CCN(CCCC(=O)C2=CC=C(F)C=C2)CC1)C3=CC=C(Br)
C=C3 bromperidol CYP3A4  
C[S](=O)(=O)CCNCC1=CC=C(O1)C2=CC=C3N=CN=C(NC
4=CC=C(OCC5=CC(=CC=C5)F)C(=C4)Cl)C3=C2 lapatinib CYP3A4 CYP3A5 
C1=CC=C2C(=C1)C=CC3=CC4=C5C=CC=CC5=CC=C4C=C
23 

dibenzo_ah_anthra
cene 

CYP1A2;
CYP2C9 CYP2B6 

CNC(=O)C1=C(F)C=C(C=C1)N2C(=S)N(C(=O)C2(C)C)C3=
CC=C(C#N)C(=C3)C(F)(F)F enzalutamide CYP2C8 

CYP3A4;C
YP3A5 

[H][C@@]12OC3=C(OC)C=CC4=C3[C@@]11CCN(C)[C
@]([H])(C4)[C@]1([H])CC[C@@H]2O dihydrocodeine CYP3A4 CYP2D6 
CC1(C)CCC(=C(C1)C2=CC=C(Cl)C=C2)CN3CCN(CC3)C4=
CC(=C(C=C4)C(=O)N[S](=O)(=O)C5=CC(=C(NCC6CCOCC
6)C=C5)[N](=O)=O)OC7=CN=C8[NH]C=CC8=C7 venetoclax CYP3A4  
CC1(C)CC(O)C(=C(C1)C2=CC=C(Cl)C=C2)CN3CCN(CC3)C
4=CC(=C(C=C4)C(=O)N[S](=O)(=O)C5=CC(=C(NCC6CCO
CC6)C=C5)[N](=O)=O)OC7=CN=C8[NH]C=CC8=C7 venetoclax_M5 CYP3A4  



CC1(CO)CCC(=C(C1)C2=CC=C(Cl)C=C2)CN3CCN(CC3)C4
=CC(=C(C=C4)C(=O)N[S](=O)(=O)C5=CC(=C(NCC6CCOC
C6)C=C5)[N](=O)=O)OC7=CN=C8[NH]C=CC8=C7 venetoclax_M2 CYP3A4  
CC(C)(C)C1=NC(=C(S1)C2=CC=NC(=N2)N)C3=CC=CC(=C
3F)N[S](=O)(=O)C4=C(F)C=CC=C4F dabrafenib 

CYP2C8;
CYP3A4 

CC(C)(CO)C1=NC(=C(S1)C2=CC=NC(=N2)N)C3=CC=CC(=
C3F)N[S](=O)(=O)C4=C(F)C=CC=C4F 

Hydroxy_dabrafeni
b CYP3A4  

CCC1=C(C)C=C(C(=O)NC2(CCCCC2)C(O)=O)[C](=O)[N]1
CC3=CC=C(F)C=C3 S-777469 CYP2C9  
CCC1=C(CO)C=C(C(=O)NC2(CCCCC2)C(O)=O)[C](=O)[N]
1CC3=CC=C(F)C=C3 S-777469_5HM CYP2C9  

O=C1NC(=O)[C@H]([C@@H]1C2=C[NH]C3=CC=CC=C2
3)C4=C[N]5CCCC6=CC=CC4=C56 tivatinib 

CYP2C1
9;CYP3A
4;CYP3A
5 

CO[C@@H]1[C@@H](C[C@H]2O[C@]1(C)[N]3C4=CC=
CC=C4C5=C3C6=C(C7=C(C=CC=C7)[N]26)C8=C5CNC8=
O)N(C)C(=O)C9=CC=CC=C9 midostaurin CYP3A4  
C[C@]12CC[C@H](O)CC1CCC3C2CC[C@]4(C)[C@H](CC
[C@]34O)C5=CO[C](=O)C=C5 bufalin CYP3A4  
CCC1=C(C=C2C(=C1)C(=O)C3=C([NH]C4=CC(=CC=C34)C
#N)C2(C)C)N5CCC(CC5)N6CCOCC6 alectinib CYP3A4  

CC1CCN(CCN1C(=O)C2=CC(=CC=C2[N]3N=CC=N3)C)C4
=NC5=CC(=CC=C5O4)Cl suvorexant 

CYP2C1
9;CYP3A
4 

O=[C]1C=CC2=C3[N]1C[C@@H](CN4CCC(CC4)NCC5=N
C=C6OCCCC6=C5)[N]3[C](=O)C=N2 GSK2140944 CYP3A4  

CNCC1=C[N](C(=C1)C2=CC=CC=C2F)[S](=O)(=O)C3=CN
=CC=C3 

Vonoprazan_TAK43
8 CYP3A4 

CYP2B6;C
YP2D6;CY
P2C19 

CCOC1=CC=C(C=C1)[N]2[C](=O)C3=CC=CN=C3N=C2[C
@@H](C)N(CC4=CC=CN=C4)C(=O)CC5=CC=C(OC(F)(F)F
)C=C5 AMG487 CYP3A4  
C[C@@H](N(CC1=CC=CN=C1)C(=O)CC2=CC=C(OC(F)(F)
F)C=C2)C3=NC4=NC=CC=C4[C](=O)[N]3C5=CC=C(O)C=
C5 AMG487_M2 CYP3A4  
CN1C[C@@]2(C=C)[C@@H]3C[C@H]4OC[C@@H]3[C
@@H]1C[C@]25C4=NC6=CC=CC=C56 koumine 

CYP3A4;
CYP3A5 

OC1=CC=C(Cl)C=C1C(=O)NC2=C(Cl)C=C(C=C2)[N](=O)=
O Niclosamide CYP1A2  

 


