

intellegens

Practical Applications of Deep Learning to Imputation of Drug Discovery Data

Webinar: 28th April 2020

Presenters: Ben Irwin – Optibrium and Julian Levell – Constellation Pharmaceuticals Host: Matt Segall – Optibrium

Today's Webinar Presenters and Host

Ben Irwin Senior Scientist Optibrium

Julian Levell Vice President of Drug Discovery Constellation Pharmaceuticals

Matt Segall CEO Optibrium

Constellation Pharmaceuticals

Cancer therapeutics via manipulation of transcriptional programs in tumor cells and immune cells

7

Constellation Pipeline

Clinical programs and preclinical development candidates

Stellar Science, Breakthrough Medicine

8

Constellati

PHARMACEUTICAL

Alchemite™ Applied to Constellation Programs

Scope of deep learning & data sharing collaboration

Inhibitors of CBP and EP300 Lysine Acetyltransferase

Completed program Mostly closed, complete dataset

Ongoing Undisclosed Discovery Program

Ongoing hit-to-lead program Modest initial dataset, plus batchwise new datasets No structures disclosed : shared StarDrop molecular descriptors plus all primary biochemical, cellular and ADME data

Recent Publications covering aspects of the CBP/EP300-HAT program:

- Make the right measurement: discovery of an allosteric inhibition site for p300-HAT Gardberg et al, Struct. Dyn. 2019, 6, 054702 [https://doi.org/10.1063/1.5119336]
- Early Drug-Discovery Efforts towards the Identification of EP300/CBP Histone Acetyltransferase (HAT) Inhibitors Huhn et al, ChemMedChem 2020 (in press) [https://doi.org/10.1002/cmdc.202000007]
- Discovery of CPI-1612: A Potent, Selective, and Orally Bioavailable EP300/CBP Histone Acetyltransferase (HAT) Inhibitor
 Wilson *et al*, ACS Med. Chem. Lett. **2020** (in press) [https://doi.org/10.1021/acsmedchemlett.0c00155]

Overview

- **Problems** with pharma data:
 - Define solutions to these problems
- Alchemite: A novel deep learning algorithm for *imputation*
 - Imputation = Filling in the blanks
- Walkthrough deep learning imputation on a real project:
 - Early screen data
 - Validation
 - Late stage models
 - Comparison with standard QSAR methods
- Larger applications and **future prospects**

intellegens

Prediction vs. Imputation

- Prediction uses input 'features' to predict one or more property values for a compound, e.g. QSAR models
- Imputation is the process of filling in missing data in sparse data using the limited data that are already available

Problems with Pharma Data

Problems with Pharma Data

For a machine learning method to be **practically** useful in QSAR it should handle:

Missing Values	Noisy Data		
Multiple Endpoints	Data Changing with Time		

- Problem:
 - Most algorithms cannot handle missing inputs
 - $y = f(x_1, ?, x_3, x_4, ?)$
 - Simple methods to impute give poor quality results
 e.g. imputation via mean
 - $y \neq f(x_1, \overline{x_2}, x_3, x_4, \overline{x_5})$
- Solution:
 - Algorithm should make the most of data present
 - "Fill in" the missing values with sensible predictions

	SMILES	Potency vs Parasite (uMc	Ion Regulation Activity	SSI%	EC50Chembl(uM)	ertl-39	aminoethanol1
1	the for	10	?	?	?	0	1
2	ALE	0.6095	?	?	?	0	0
3	AS	1.121	?	?	?	0	0
4	A B	0.7308	?	?	?	0	0
5	A. A.	10	?	?	?	0	0
6	04.0.0'	?	?	?	?	0	0
7	N N O	?	?	?	?	0	1
8		0.296	0	?	?	0	1
9		0.142	0	?	0.4809	0	0

Noisy Data and Confidence in Predictions

- Problem:
 - Pharma data is inherently noisy
 - Input data may not be "true"
 - Models output numbers with no context
- Solution:
 - Account for input noise
 - Predictions should come with confidence values!
 - Highly confident predictions are more valuable than weak ones
 - Provide a big error bar if the model doesn't know the answer

Multiple Endpoints – One Model

- Problem:
 - Many columns in project data: can't train a model for each one...
 - Activity IC₅₀, EC₅₀: protein, supersome, cell
 - Multiple targets: related and unrelated
 - Absorption, distribution, metabolism, and excretion (ADME)

o Plasma protein binding, intrinsic clearance, CYP inhibition, permeability, solubility

• Solution:

Changing with Time

- Problem:
 - Data are evolving as project continues
 - Chemical space changes
 - Activity changes i.e. increasingly active compounds are discovered
 - Data sparsity changes (more ADME, less HTS)
 - Uncertainties change (multiple replicates, finer resolution)
- Solution:
 - Models which extrapolate well
 - Retraining the models as appropriate
 - Temporal validation

Alchemite – A Method for Deep Multiple Imputation

Optibrium Collaboration with Intellegens

Whitehead et al.

J. Chem. Inf. Model. 2019, 59, pp. 1197-1204

we show that the neural network method outperforms

traditional quantitative structure-activity relationship

(QSAR) models and other leading approaches. Furthermore, by focusing on only the most confident predictions the accuracy

is increased to $R^2 > 0.9$ using our method, as compared to $R^2 = 0.44$ when reporting all predictions.

Alchemite – A Method for Deep Multiple Imputation

- Originally used to design new materials at the University of Cambridge, UK
 - Design alloys, identify errors in databases
 - Optimising algorithm and applying to drug discovery data
- Take solution of deep neural network $D_{NN}(\vec{x})$ under fixed point iteration
 - $D_{NN}(\vec{x}; W, \beta, \theta) = \vec{x}$, for \vec{x} in training set.

Imputation of Assay Bioactivity Data Using Deep Learning, T. M. Whitehead*, B. W. J. Irwin, P. Hunt, M. D. Segall, G. J. Conduit, JCIM, 2019

Output Predictions and Uncertainty

- Outputs a probability distribution by multiple imputation (1000's of samples).
 - Network is very quick to train/evaluate: train thousands of networks

Practical Application of Deep Learning to Project Data

- Two Projects
 - A: Completed project (CBP/EP300-HAT)
 - B: Ongoing project that had recently commenced

Project	No. of Cmpds.	Biochemic Endp	al Activity oints	Cell-base Endp	d Activity oints		ndpoints
		Number	Sparsity (% Filled)	Number	Sparsity (% Filled)	Number	Sparsity (% Filled)
А	1241	3	45	2	15	8	16
В	338	5	55	0	N/A	8	3

• Additional data points for Project B compounds were measured for imputed data points after completion of the models

- Compare accuracy of Alchemite model to conventional QSAR models
 - Does Alchemite add value in the limit of small data sets?
- Compare models built on all data simultaneously with those built on individual projects and subsets of data
 - Can deep learning handle the complexity of different chemical spaces and endpoints in a single model?
- Evaluate Alchemite's ability to estimate confidence in individual predictions and target the most accurate results

- Alchemite models of the individual project data sets
- A single Alchemite model covering the combined activity and ADME data from both projects
- Conventional QSAR models of the individual endpoints
 - Random forest, Gaussian processes, radial basis functions and partial least squares

Comparison of Alchemite and QSAR Single Alchemite model of combined data set

Average R^2 : QSAR = 0.44, Alchemite = 0.65

Single model performs equivalently to individual project models

* Individual project model for ADME properties built and tested on Project A only. Full data set model tested against both projects.

Example Validation Project B - Bioactivity 2

• We then received more data on the Project B compounds

Identify and Discard the Least-Confident Predictions Project B Bioactivity 2

Increasing confidence in prediction

Conclusions from Initial Models

- Alchemite significantly outperforms QSAR models
- Independent and prospective test set performance is very good and consistent
- The single Alchemite model performs equivalently to models of individual projects and subsets of the data
 - Can combine data from multiple chemistries and types of endpoints in a single model
- Alchemite can target focus on the most confident and accurate results
- Next steps... Application to new compounds and data as project progresses

Increasing Time

Temporal Prospective Validation

- Received an additional 874 compounds for project B
 - Sparse results from real experiments
 - Many additional ADMET datapoints
- Three blocks of temporally coordinated data, B1,2,3:
 - Model 1 : Trained on all of the original data
 - Model 2 : Original + B1
 - Model 3 : Original + B1 + B2
 - Test each model on B3

Original Train	
Original Test	
Block 1	
Block 2	
BIOCK 3	

Project B - Temporal Prospective Validation Performance on Block 3 (most recent) data

ADME Human Plasma Protein Binding: Predicting Block 3

- Initial models can't tell high from low
- Quality of predictions and error models improves with more data

Example of Activity Improving: Predicting Block 3

- Good model gets better
- Last model confident identifying active compounds better than μM

Comparison of Alchemite and QSAR Single Alchemite Model – 20% independent test set

Make Better Use of Data Averaged over all Endpoints

More Training Data Required

Part 2 - Conclusions

- Alchemite: Practical application of deep learning
 - Handles missing data and makes the most of extreme levels of sparsity
 - Provides robust uncertainty estimates on predictions
 - One model trained for all project data simultaneously, exploits assay-assay correlations
 - Retrainable to handle all stages of project which changes in time
- Alchemite can focus on the most confident and accurate results
- Alchemite models improve as data is added in a realistic chronological project series

Application to Larger Datasets

Alchemite[™] Application to Global Pharma Data

- Application to large data set
 - **710,305** compounds
 - 2,171 assays totaling 3,568 endpoints
 - Less than 1% complete
- Covering a full range of drug discovery assays, including compound activities and ADME properties
- Join our webinar on Tuesday 26th May to learn more:
 - "Large scale imputation of drug discovery data using deep learning"

Non-Proprietary Value Aspects of Alchemite™

Some overarching learnings and caveats

Confidently deprioritizing the synthesis of new target molecules

- Confidently predicted inactives: few false negatives
- Can save substantial resources or repurpose to higher value targets by limiting the number of predicted inactive compounds made
- Still need to make the compounds with structurally distinct changes, but overall could avoid ~10 to 20% of irrelevant target molecules.
- Activity prediction improved with potency but false negatives observed, mostly in predictions with low confidence
- All false negatives were structurally outside of the SAR for the training set
- Not comfortable to only make predicted active compounds, so also explored compounds predicted to be inactive with low confidence

Identifying outliers in measured datasets

- Empty well data, and (for example) solubility driven artifacts in permeability & off-target datasets can be identified
- Important to pay attention to the confidence in the predicted data (eg. color plots by error and only pay attention to outliers with high confidence)
- Testing or data for close structural analogs, and / or retesting confirmed the issues is several cases
- Avoid discarding good molecules for further profiling, or discarding subseries for further exploration due to incorrect measured data

Caveats

- Need at least some base datasets to build the initial model could need over a hundred molecules to reach a good level of confidence
- Chirality : descriptors used did not include a chirality factor & many compounds were not assigned absolute stereochemistry due to achiral synthesis (and separation to test multiple isomers)
- Obviously, stereochemistry can have a profound effect upon on- and off-target activity as well as ADME profiles.
- Could add stereochemistry descriptors to explore if this solves for the problem. However, this will not solve for data which is based on unknown stereochemistry (eg. R and S enantiomers across the series are separated by a variety of different columns / methods but absolute stereochem is either not known or not unambiguously assigned in the database)

www.augmentedchemistry.ai

- Application of Alchemite offered on a collaborative basis
- Example applications include:
 - 'Fill in the gaps' in your database with confident results to target high-quality compounds
 - Identify your most valuable compounds and the most important experiments to perform
 - Run virtual screens to find new starting points for your projects
- Based on a discussion of your data and objectives, we can provide a tailored project proposal