

Worked Example:

Automatic QSAR Model Building and Validation

In this example, we will explore the application of StarDrop's Auto-Modeller to build a QSAR model of potency against the Muscarinic Acetylcholine M5 receptor, based on a set of public domain K_i data obtained from the ChEMBL database (<u>https://www.ebi.ac.uk/chembl/</u>). The resulting model will be applied to an additional set of compounds to predict their properties and visualise the structure-activity relationship.

Step-by-step instructions for all the features you will need to use in StarDrop are provided, along with screenshots and examples of the output you are likely to generate. If you have any questions, please feel free to contact stardrop-support@optibrium.com.

Exercise

 Open the StarDrop Project file Muscarinic_acetylcholine_receptor_M5.sdproj by selecting Open from the File menu.

Optibrium[™], StarDrop[™], Card View[®], Nova[™] Glowing Molecule[™] and Auto-Modeller[™] are trademarks of Optibrium Ltd.

The first data set displayed contains 129 compounds with measured activity against the muscarinic acetylcholine receptor M5. These data are K_i values in μ M. However, to build a good model, the data should be converted to logged units. Logged units provide a more even distribution of values to model and a better correlation with the compound descriptors used to build the model. Therefore, we will use the **Mathematical Function Editor** in StarDrop to generate pK_i values.

- Select the fix button on the right-toolbar to open the Mathematical Function
 Editor.
- In the f(x) field, enter the equation "6-log({Ki (uM)})". This can be easily achieved by pointing and clicking in the editor (or copying and pasting without the quotes). Enter the name of the new column, pKi, in the New Column Name field and click OK.

wC	Column Name: pKi				Save
und	tions		Columns	Calculator	
~	Arithmetic exp In log pow General bin if uncertainty unqualified valid		Structure ID Ki (uM)	7 8 9 4 5 6 1 2 3 0 . = < > <=	+ - * / () AND OF >= !=
× ×	Molecule smiles Numerical absolute	~			C

The new column containing pK_i values will appear in the data set. Now we're ready to build a model of these data.

٩	Structure	D	Ki (uM)	рКі
1	J.J.	CHEMBL173955	42	4.38
2	ofuneor	CHEMBL175059	0.03	7.52
3		CHEMBL227429	33.1	4.48

 Change to the Auto-Modeller area on the left and click on the button to begin a new modelling session.

₩ StarDrop - Muscarinic_acetylcholine_receptor_MS File Edit View Data Set Tools Custom Scripts Help						-		×
Visualisation Models Scoring Design SeeSAR 3D P450 Nova	주 Q Auto-Modeller	Structure	ID	Ki (uM)	<mark>–</mark> pKi		^	
Session Status		Jung.	CHEMBL173955	42	4.38			G ▲
	4	2 ofuner	CHEMBL175059	0.03	7.52			111
	3		CHEMBL227429	33.1	4.48			2
		ofinior	CHEMBL177040	1.1	5.96			
Model Summary		· 072,050	CHEMBL177322	2	5.7			fo
		· Jak	CHEMBL195	0.000917	9.04			₩ ₩
	-	ofino	CHEMBL177041	0.037	7.43			RI Q
	8	. 2, 3	CHEMBL172729	75	4.12			
	g		CHEMBL169401	309	3.51			
	1	·	CHEMBL169494	275	3.56			
Display: 🗌 Training set 🔹 🗌 Validation set 🔹 🗹 Test set 🌻	1	1 Sec	CHEMBL172234	57.5	4.24			
Server Status: No jobs in queue	=	Muscarinic_ace	tylcholine_receptor_M5	Ki 🐇	New compo	unds	Ŧ	
Ready				Rows 129 (0) Colun	nns 4 (0) Selected 0 Server	status: 🍚 🍚 🔍 🔍	100	0

This will open the Auto-Modeller wizard.

The first page enables you to choose the type of model to build: continuous (i.e. numerical) or category (i.e. classification). You can also choose whether to allow StarDrop's Auto-Modeller to split the data into training, validation, and test sets automatically or provide these separate sets yourself. Finally, you can confirm the data set and the columns containing the structures and property values to be modelled. We will use most of the default settings in this case, but we need to select the correct property column to model.

👯 StarDrop Auto	-Modeller	×
Create Sessi	on	
Model Type		
Continuous	Category	
Set Split		
Automatic	🔿 Manual	
Model Data		
Name: Muscar	inic_acetylcholine_receptor_M5_Ki	
Data Set:	Muscarinic_acetylcholine_receptor_M5_Ki	\sim
Validation Set:	<none></none>	\sim
Test Set:	<none></none>	\sim
value Column:	рКі	
sture Colur	nn: Structure	
	< Back Next > Finish	Cancel

Choose the **pKi** column from the **Value Column** drop-down and click **Next**.

The next page enables you to configure the parameters for the automatic selection of training, validation and test sets. In this case, we will use the default set-split parameters.

• Click Next.

The third page enables you to select the descriptors to use. The built-in library of whole-molecule and 2D descriptors are selected by default. More details are available by clicking **Select**. It is possible to add your own descriptors as SMARTS patterns or to use additional columns in the data set as descriptors. Finally, the parameters for the selection of descriptors can be defined. Again, we will use the default settings.

Click Next.

The final page of the Auto-Modeller wizard enables you to select the modelling methods to apply. The methods are categorised by their computational cost, and the methods selected by default will depend on the size of the data set.

- As shown to the right, we would recommend deselecting the Intensive methods for this quick example.
- Click **Finish** to begin the modelling session.

Visualisation Models Scoring Design SeeSAR 3D P450 Nova Auto-Modeller	The top section of the Auto-
Session Status Muscarinic_acetylcholine_receptor_M5_Ki Starting session	Modeller area provides a running
	update on the progress of your
Visualisation Models Scoring Design SeeSAR 3D P450 Nova Auto-Modeller	modelling session. If there are no
Session Status > Muscarinic_acetylcholine_receptor_M5_Ki Generating models (4 complete)	other modelling sessions ahead of
	yours in the queue on the server,
Visualisation Models Scoring Design SeeSAR 3D P450 Nova Au	this should only take a few
Session Status > Muscarinic_acetylcholine_receptor_M5_Ki Complete	minutes (you can check the
	server's status at the

bottom of the Auto-Modeller area).

• When the modelling session is complete, click the arrow next to the session to open up the list of models that have been generated.

Vi	sualisation	Models	Scoring	Design	SeeSAR	3D	P450	Nova	Auto-Modeller
5	Gession Muscarinio RBF M Rando GPFixe PLS M GP2DS	c_acetylchol odel m Forest Reg odel earch	ine_receptor gression Mo	_M5_Ki del	Status Complete				

The model with the best result on the validation set will be highlighted in red. Please note that the specific results you see may differ from the examples shown here due to a random element in the assignment of compounds to the training, validation and test sets.

- Select the modelling session to see a summary of the different models. This will show the result of the best model on the test set.
- Tick the Validation set option at the bottom to see results for all of the models on the validation set.

You can see that the Auto-Modeller has built a model with each of the modelling methods and compared the performance of these for the validation set to identify the most predictive model. This best model is then further validated using the external test set. A robust model should perform well for both the validation and test sets.

- Select a model to see a plot of the validation and test sets and confirm that the model is producing reliable predictions.
- Hover the mouse pointer over a data point to see its corresponding structure.

If you are happy with the results for a model, you can save it to apply it to new compounds to predict the potency and visualise the structure-activity relationships. In this case, we will save the random forest regression model.

Status Complete enerate Models	
Complete enerate Models	
enerate Models	
enerate Models	
enerate Models	
nange Default Settings	
elete All Sessions	
reate Folder	
dd to Models Tab	
wa Madal	
ive Model	

- Right-click on the **Random Forest Regression Model** under the modelling session in the **Auto-Modeller** area and select the **Save Model** option.
- In the Save Model dialogue, enter an appropriate name, set the units to pKi/pIC50 and click the OK button (if you wish, you can also enter more information in the Long Name and Description boxes).
- Finally, navigate to a convenient directory and click the Save button to save the model.

👯 Save Model	
Name: Muscarinic_M5_pKi	Units: pKi/pIC50 🗸
Long Name:	
Description:	
	OK Cancel

	👯 Save File Dialog					×
а	← → • ↑ 🔒 « D	ocuments > StarDr	op Example	✓ ひ Search Sta	rDrop Example	Q
	Organise 👻 New fold	ler				?
nd	This PC	Name	^	Date modified	Туре	
	🗊 3D Objects		No iter	ns match your search.		
ve	Desktop					
	🖶 Documents					
	👃 Downloads 🛛 🗡	<				>
	File <u>n</u> ame: Mus	curinic_M5_pKi.aim				~
	Save as type: Mod	el Files (*.aim)				~
	∧ Hide Folders			<u>S</u> ave	Cance	el les

Note: The resulting model can be shared with any other StarDrop user to load and use in their copy of StarDrop.

• Switch to the **Models** area, and you will see that the model has appeared under the corresponding directory name, ready to run on new compounds.

We'll illustrate the application of this model to an additional 10 compounds that were not included in the data set used to build and validate the model.

• Change to the **New compounds** data set by clicking on the tab at the bottom of the data set.

K StarDrop - Muscarinic_acetylcholine_receptor_M5_mod					- 🗆	×
File Edit View Data Set Tools Custom Scripts Help						
6	C Structure	ID ID	Ki (uM)			
Visualisation Models Scoring Design SeeSAR 3D P450 Nova Auto-Modeller QSAR Models: Type to search	, Allon	CHEMBL353500	0.0579			9
> □ logD ∧ > □ 2.05 pKi > > □ hERG plC50	2 24.5	CHEMBL352808	29			1
> 688 log([brain]{[blood]] > 688 category > HiA category > ℝ - pop category	3 -	CHEMBL352723	309			ī.
	4	CHEMBL343182	11			100
> MW > HBD > HBA	5	CHEMBL339719	0.00119			1
Custom Custom Custom	6	CHEMBL338801	0.00302			8
Salityby_ckampie Muscarinic_M5_pKi	7 %	CHEMBL283320	18.6			R
Intensive Models:	8	CHEMBL275104	0.511			
 > ■ Most Rotin pria > ■ Most Basic pKa > ■ All pKas 	9 . Qu	CHEMBL105593	204			
	10	CHEMBL105148	324			
					^	
	K. Muscarinic_a	acetylcholine_receptor_M5_Ki	*	New compounds		
Ready			Rows 10 (0) Column	is 3 (0) Selected 0 Server status: 🥥 🤇		0

In the Models area, select the new model and any others you would like to run by

ticking the box next to the model and clicking the 📂 button.

The new model can be used in the same way as any other model in StarDrop. For example, selecting the column header will display the Glowing Molecule visualisation for each compound, showing the structure-activity relationship captured by the model we have built.

Changing to the **Design** area and selecting a row in the data set will enable you to explore optimisation strategies guided by the Glowing Molecule.

le Edit View Data Set Tools	Custom Scripts Help							
	During C can an an	e	Q	Structure	ID	Ki (uM)	logS	logS @ pH7.4
	▼	Clean Reset	1	ofting	CHEMBL353500	0.0579	1.08	0.274
			2	Junt.	CHEMBL352808	29	0.856	1.22
			3	, and	CHEMBL352723	309	2.13	2.02
6			4	A	CHEMBL343182	11	5.2	2.72
			5	for	CHEMBL339719	0.00119	1.77	2.29
			6	E.	CHEMBL338801	0.00302	1.21	1.65
operty: No Property	Parulte	95 % Q 🕈	7	đ	CHEMBL283320	18.6	3.09	2.37
	meaium			n h				
21/0 attinity category	low		8	2 million	CHEMBL275104	0.511	4.99	2.88
LUD attinity category	low 4.75 279 0		8		CHEMBL275104 CHEMBL105593	0.511 204	4.99	2.88
I PPB90 category I logP I MW I HBD I HBA I TPSA	low 4.75 279 0 2 16.4		8 9 10		CHEMBL275104 CHEMBL105593 CHEMBL105148	204	4.99 1.76 2.15	0.667
e uvo attinity category PP990 category FopP MW HBD HBA PFSA Fescibility Rotatable Bonds	low 4.75 279 0 2 16.4 0.125 3		8 9 10 <	La cost	CHEMBL275104 CHEMBL105593 CHEMBL105148	0.511 204 324	4.99 1.76 2.15	2.88 0.667 0.927

This has been a quick example of the application of StarDrop's Auto-Modeller. There are, of course, additional features enabling expert modellers to control the parameters of the model

building process and explore the detailed results for each model. For more information or to arrange a comprehensive demo, please get in touch with <u>stardrop-support@optibrium.com</u>.