

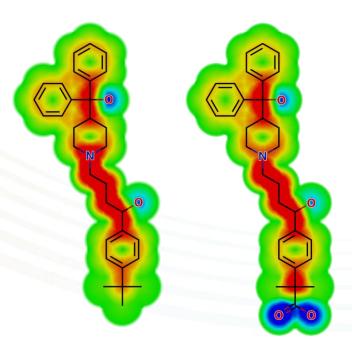
Quality Data to Quality Models 19th March 2018

Travis P. Hesketh – travis@optibrium.com

© 2018 Optibrium Ltd. .ibrium™, StarDrop™, Auto-Modeller™, Card View™ and Glowing Molecule™ are trademarks of Optibrium Ltd

Modelling PK-ADME Targets

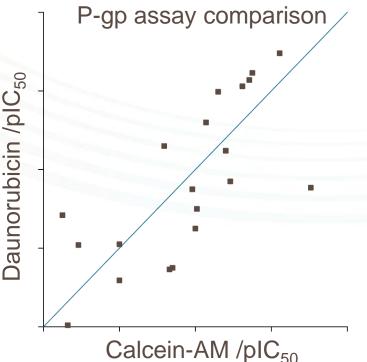
- QSAR models are a well established methodology
 - often used in industry
 - widely utilised in drug discovery
- The information they can provide is useful for prioritising synthesis
 - i.e. flagging up potential toxicity ensures that less time is wasted
- Where interpretable descriptors are used, this information can be used in design
 - if we know what makes a molecule have poor activity, we can change it



StarDrop's Glowing Molecule Visualisation of hERG inhibition for terfenadine (L) and fexofenadine (R)

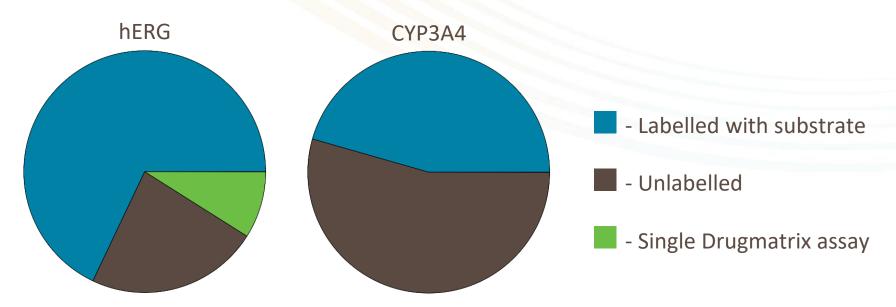
Modelling Public Data

- Our biggest problem lies not in modelling the data, but in deciding *what data to model*.
- Public data sources are an incredibly useful resource, but suffer from:
 - inter-lab and inter-assay variability
 - misreported values
 - mis-abstracted values
 - structural variations
- Knowledge about measurement conditions *(metadata)* is critical



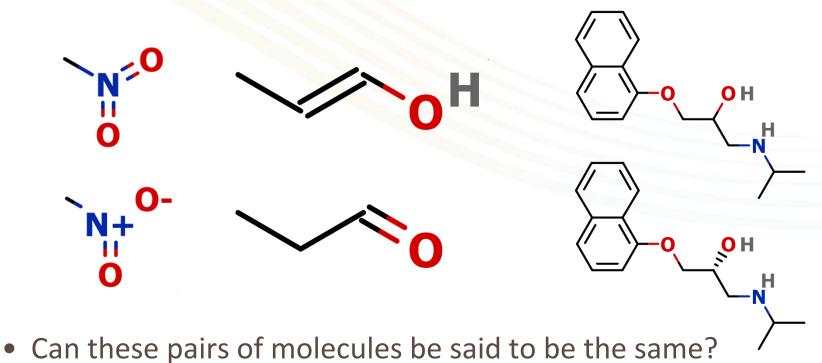
Modelling Public Data (Continued)

- In many cases this metadata is completely missing,
 - Data simply labelled 'Inhibition of X'
 - Problem is worse for some targets than for others (see below)
- This is often due to unreported conditions (or long chains of 'see citation from paper Y') in the primary literature.



Chemical Structure Problems

- Other important considerations include treatment of group representations, tautomers and stereochemistry (pictured left to right below).
- These issues can occur in all databases.

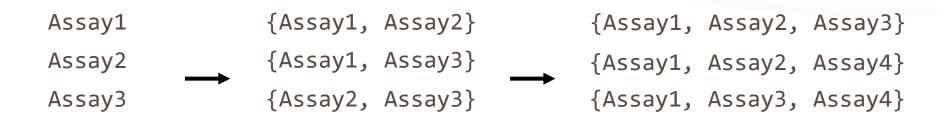


What Makes a Good Model?

- A good model is highly subjective but some desirable qualities include:
 - large domain of applicability
 - high accuracy
 - a regression model
- To get a more accurate model, the training data should be as consistent as possible
 - Unchecked public data too variable to produce accurate models
 - Checking for consistency takes a very long time
 - Modelling only well labelled data can greatly decrease available data
- 'QSARSetBuilder' (QSB) helps with this process

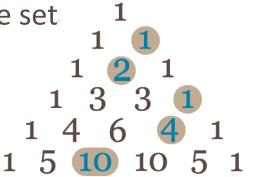
The Rationale

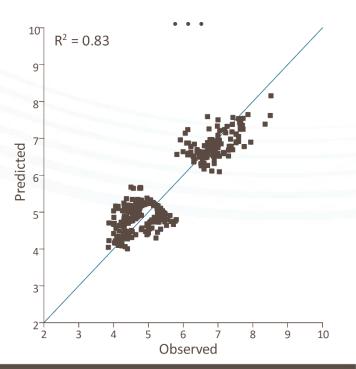
- Inconsistent data should produce poorer models, can we use potentially consistent data and then add to it whilst monitoring performance?
- Consider each ChEMBL 'assay' as a non-separable block of data and test models built from *every* combination of these blocks
- We could use the information about which assays commonly produce these good models to pick out better data



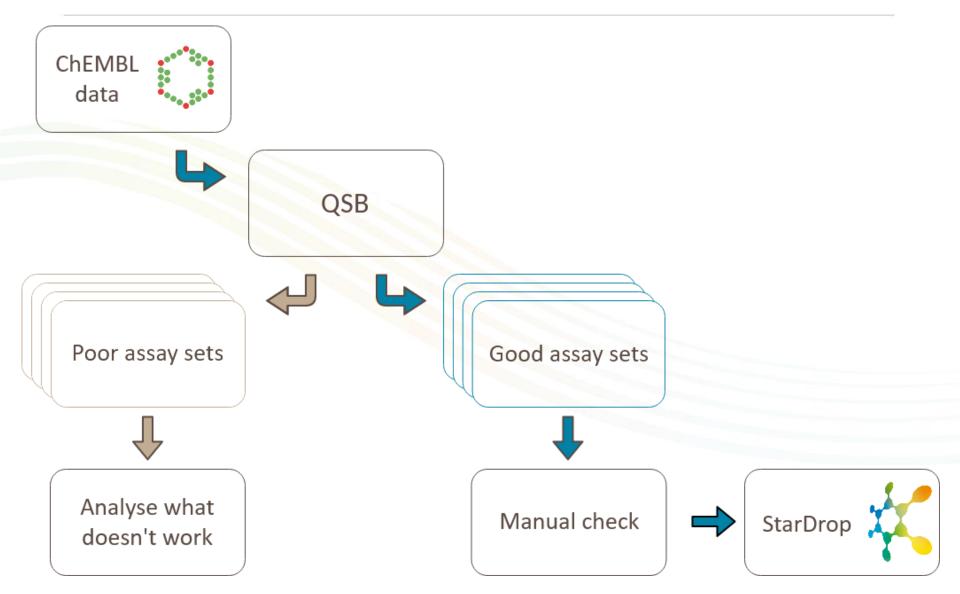
The Problem with Testing 'All the Sets'

- Too many combinations to test every possible set
 Sample sets of assays of varying size instead
- Testing many sets reduces the influence of poor set choices which report good statistics (e.g. bottom right)
- The data we collect can be used to produce a finalised dataset for modelling: an *assisted* QSAR modelling approach
- R² is coefficient of determination: how well the points fit the identity line

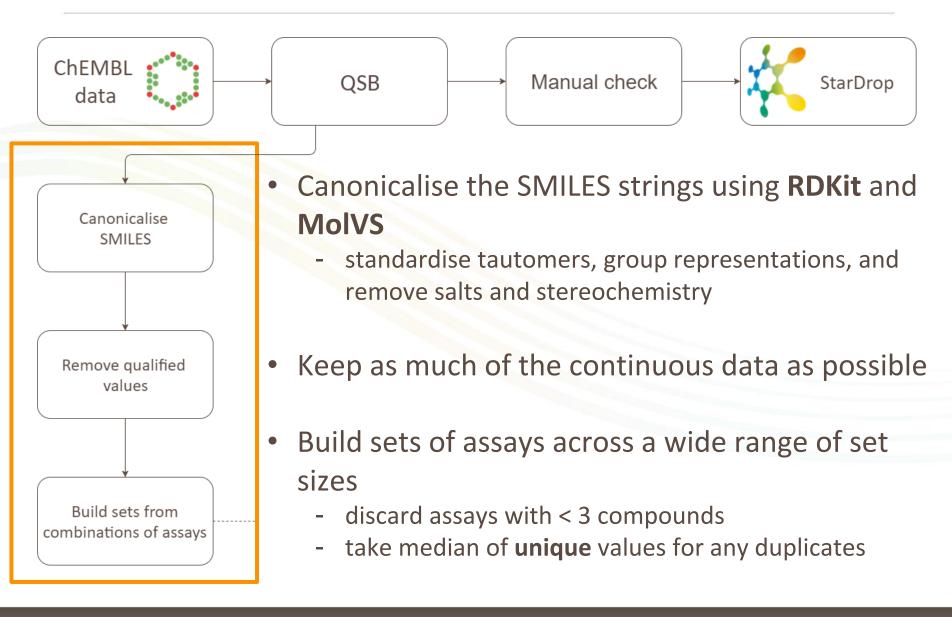




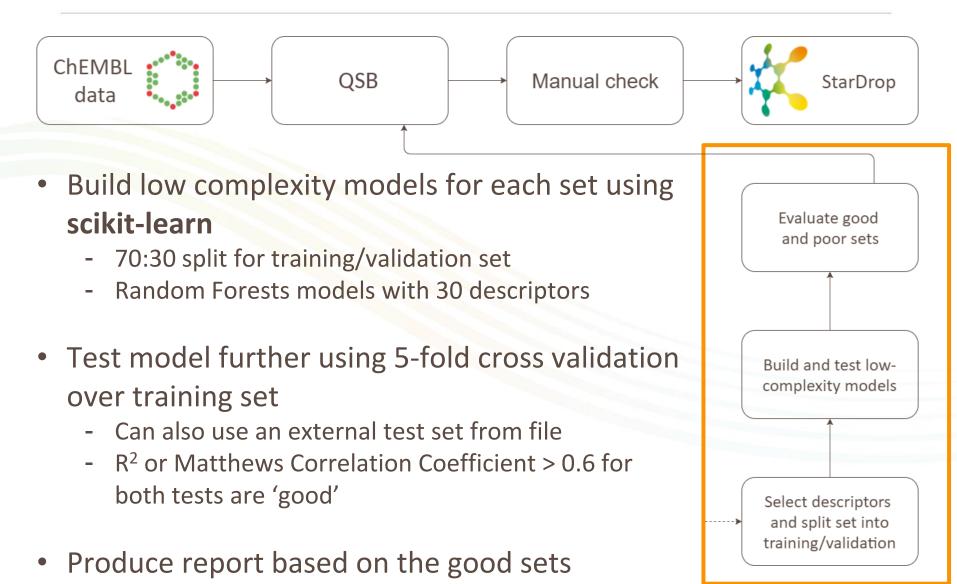
The Current QSB Workflow



An Expanded Workflow



An Expanded Workflow



Additional Detail

- Sets are built at first from favourably overlapping assays
 - having compounds in common whose PCHEMBL activities differ by < 0.5
 - additional sets are randomly assembled to target sizes (in compounds)
- The initial 97 descriptors include RDKit's fragment library and some whole molecule descriptors (Log P, VABC, MWt, HBD sites, etc.)
 - Selection from these is done using scikit-learn's Recursive Feature
 Elimination
- Sets are split into training/validation sets using the RDKit MinMax picker and Tanimoto similarity of Morgan circular fingerprints.

What Information Is Obtained?

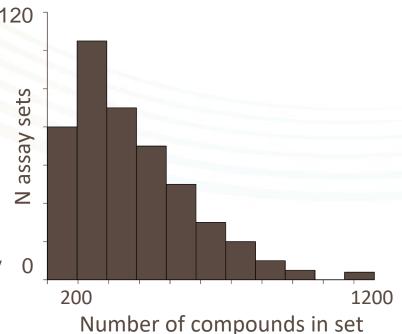
- Relative appearance of assays

 (number of good set appearances / total number of appearances)
 Look for features which could determine what makes an assay 'good'

 The distribution of set sizes

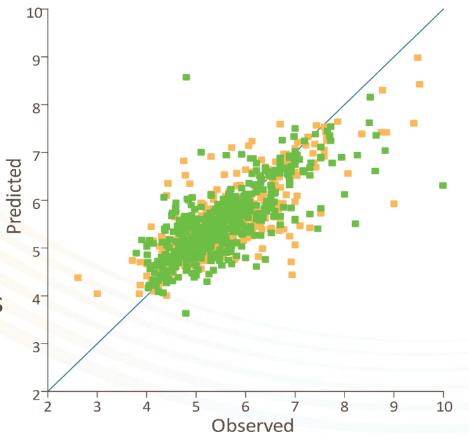
 can help to guide expectations about
 - domain of applicability
- How often descriptors are selected in good sets
 - (number of good sets using descriptor / number of good sets)

0.083
0.057
0.043
riptors:
1.00
1.00
1.00



Example – CYP3A4 (All IC₅₀ Data)

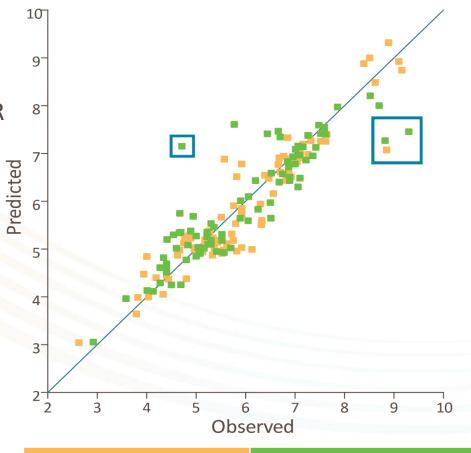
- Building a model from all ChEMBL IC₅₀ data leads to a poor model
 - Used the same data cleaning process as in QSARSetBuilder,
 3921 compounds remaining
- Running 10,000 set combinations using QSB, we get 294 good sets
 - Take all sets with relative
 appearance >= 0.02 (48)
 - Early termination flag can end run if no good sets produced in last N



Validation (N = 493)		Test (N	= 493)
R ²	RMSE	R ²	RMSE
0.625	0.574	0.544	0.632

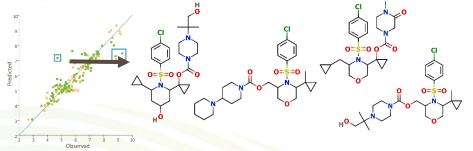
Example – CYP3A4 (Initial Post CBsort)

- Highlighted outliers are a series from a single assay
 - The paper has an activity cliff in SAR and doesn't sample much of the space around it
- Should we ignore these outliers? Two ideas for improvement
 - Add another assay which samples more of this space
 - Alternatively, as we consider assays as 'blocks', we should remove the whole assay

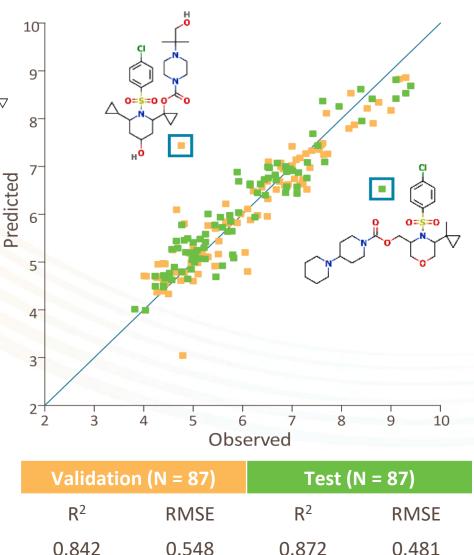


Validation (N = 84)		Test (N = 84)	
R ²	RMSE	R ²	RMSE
0.882	0.458	0.804	0.578

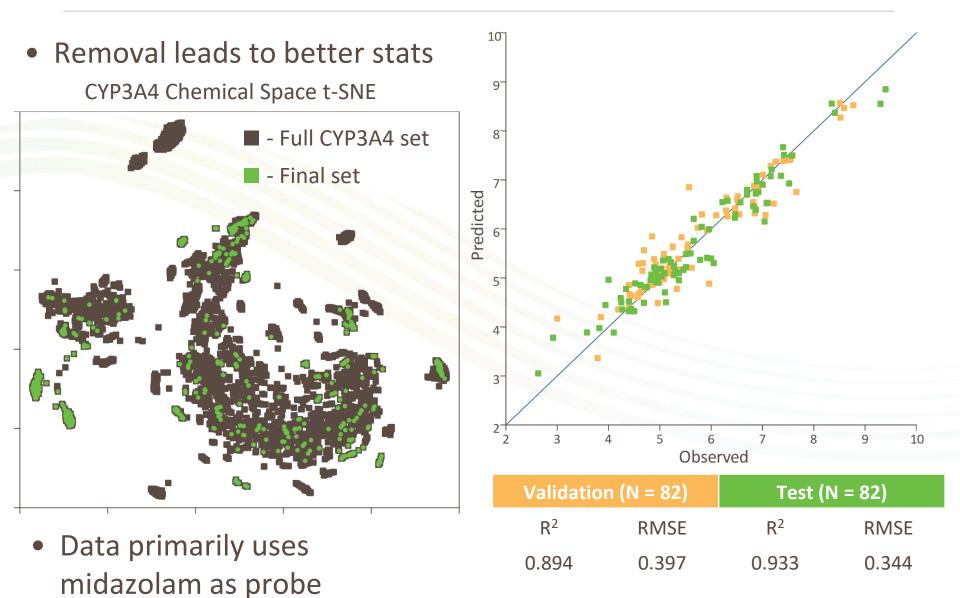
Example – CYP3A4 (Plus Additional Assay)



- Outliers appear in another, larger assay
 - More space sampled around problem molecules
 - Inclusion could improve model
- When this assay is included and a new model generated, some outliers still poor



Example – CYP3A4 (Final with Removed Assay)



Implementation and Availability

- Implemented in Python 3 and tested with version 3.6
- Cross platform tested on macOS[®], Windows[®] and Linux[®] operating systems.
- The code is freely available (GNU GPL) and can be downloaded from the Optibrium website
- Makes use of multiprocessing to run on more than one core
 Can set process priority to avoid system slowdown
- Isomeric -> canonical smiles changes, descriptors and fingerprints are cached

macOS[®] is a trademark of Apple Inc., registered in the U.S. and other countries. Windows[®] is a trademark of Microsoft Inc., registered in the U.S. and other countries. Linux[®] is the registered trademark of Linus Torvalds in the U.S. and other countries.

Thoughts for the Future

- Is there a better method to use for building sets than randomly combining assays?
 - Initial building is done using overlap we don't totally discard that information
- Can we use information about assays which commonly appear in a good set together?
- Natural language processing
 - Analyse potential probe substrates in assays using chemlistem
 - Can text analysis be expanded to consider whole articles?

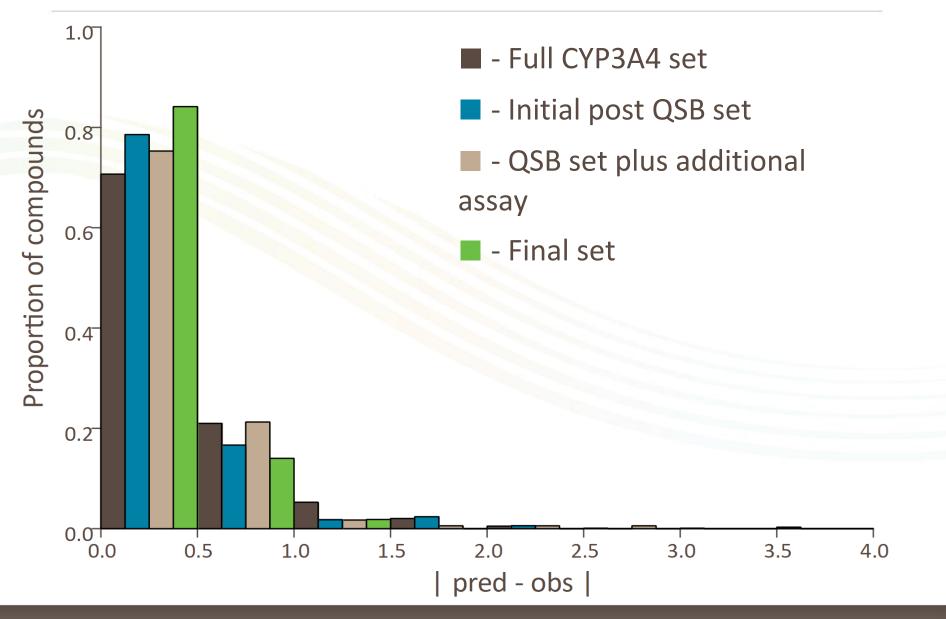
Acknowledgements

• With thanks to:

Academic supervisor: Dr. David Palmer Industrial supervisor: Dr. Peter Hunt The team at Optibrium

Software and libraries used: MolVS, chemlistem, NumPy,

Comparison of Error Distributions



Chemical Space of Plus/Initial vs Final

ę.

- Full CYP3A4 set
- Initial post QSB set
- QSB set plus additional assay
- Final set

Distribution of Rsq Values

