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Abstract 

The acid dissociation constant (pKa) has an important influence on molecular properties crucial to compound 

development in synthesis, formulation and optimisation of absorption, distribution, metabolism and excretion 

properties. We will present a method that combines quantum mechanical calculations, at a semi-empirical level 

of theory, with machine learning to accurately predict pKa for a diverse range of mono- and polyprotic 

compounds. The resulting model has been tested on two external data sets, one specifically used to test pKa 

prediction methods (SAMPL6) and the second covering known drugs containing basic functionalities. Both sets 

were predicted with excellent accuracy (root-mean-square errors of 0.7 – 1.0 log units), comparable to other 

methodologies using much higher level of theory and computational cost. 

 

Introduction 

The dissociation of a proton from a heteroatom has a significant influence on the charge distribution and 

interactions of a molecule. These influence many important molecular properties, including binding to target 

and off-target proteins, absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic (PK) 

properties, such as solubility, tissue or cellular distribution and permeability. Therefore, the ability to predict the 

propensity of a molecule to lose or gain a proton in water is crucial for the development of new chemical entities 

with desirable PK, ADME and binding properties. 

It is possible to model the free energy of the proton dissociation and gain very high accuracies using a quantum 

mechanical (QM) method based on density functional theory (DFT);1,2 however these free energy relationships 

tend to be modelled on specific functional groups (carboxylic acids, anilines, phenols, etc.) and are applied to 

small data sets due to the computational cost of these high-level methods. Varekova et al. generated 

quantitative structure-activity relationship (QSAR) models on a set of phenols with partial charge descriptors for 

the Hydrogen, Oxygen and directly bonded Carbon atoms calculated using QM methods.3 Their semi-empirical 

method using the Austin-Method 1 (AM1) Hamiltonian performed poorly, achieving a squared correlation 

coefficient (r2) of only 0.45 and a root-mean-square error (RMSE) of 1.64; however the much more 

computationally expensive second-order Møller–Plesset (MP2) method with a 6-31G* basis set achieved an 

excellent r2 of 0.97 and an RMSE of 0.40, albeit on a single class of ionizable sites. Harding and Popelier also 

investigated ab initio calculated descriptors for the prediction of pKa for 171 phenols, this time considering bond 

length descriptors, with a similar r2 of 0.92 and RMSE of 0.67.4 

QSAR models have been built using other semi-empirical QM descriptors. Tehan et al. published two papers 

detailing a correlation with Fukui frontier molecular orbital (FMO) descriptors.5,6 The authors looked at several 

different classes of protonation site, including phenols, carboxylic acids, amines and heterocycles, and used the 

AM1 method for all calculations. The r2 coefficients for individual classes of site varied from 0.55 (heterocycles) 

to 0.94 (amines), with predictions improving with the addition of partial charge descriptors. 
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Several commercial vendors have developed pKa models (ACDLabs,7 SimulationsPlus,8 Schrodinger,9,10 

ChemAxon,11 Molecular Discovery12), which rely on linear free energy relationships (LFER) or QSAR methods and 

are derived from large databases of pKa values (>10,000 data points in most cases). Liao and Nicklaus13 compared 

nine different programs applied to the predicted pKa values of 197 pharmaceutical compounds and found a 

range of performances (r2 values from 0.58 to 0.94 and RMSEs from 1.8 to 0.65), where surprisingly the worst 

performing was a DFT-based method. However, it is very difficult to ascertain whether the more successful 

methods simply had more of the test compounds within their own training sets. Other reviews of pKa tools have 

been published, at least in part, based on proprietary compounds Balogh et al. published results on their in-

house dataset of 95 compounds, 14 Manchester et al. evaluated the predictive performance on 211 drug-like 

compounds,15 Settimo et al. from Vertex used datasets of in-house and external sources to show how varied the 

performance can be between models.16 The success of each method depended on the test dataset used and on 

the ability of each model to recognise potential ionisable sites. Hence, the performance varied depending on 

the ionisable site considered (bases tended to be less well predicted compared to acids). 

Our aim was to create a model using a semi-empirical QM approach combined with machine learning. We 

wished to retain the physically relevant contributions to the electrostatics, provided by consideration of the 

whole molecular environment, while balancing this with acceptable computational cost and speed of 

calculation. The model we describe herein employs a single model (not specific to any ionisable group), derived 

from a comparatively small, but carefully curated data set of aqueous pKa values for mono- and diprotic 

compounds, where the atomic assignment of pKa values to specific heteroatoms or groups was unambiguous. 

This is essential for a correct characterisation of the ionised site to reduce the potential for noise in the data, 

where the association of a pKa with an exact site can be lost in databases containing very large numbers of 

polyprotic molecules.  

The next section describes the methods and data used to generate a model to predict pKa. Following this, the 

Results and Discussion section provides a detailed analysis of the performance of the model on independent 

validation and test sets, as well as additional published benchmarking sets. Finally, the Conclusions section 

summarises the outcome of this study.  

 

Methods  

Data Set  

A data set was collated from public data sources17,18,19 and comprises aqueous pKa determinations at 

temperatures close to 25 degrees. Each data point was carefully inspected to ensure that the assignment of the 

pKa value to a specific site or group was clear and unambiguous. 

The total data set contained 2,435 pKa values, which were split into 1,722 values in the training set, 359 in the 

validation set and 354 in the test set. These corresponded to 2,243 unique compounds of which 1,570 were in 

the training set, 336 in the validation set and 337 in the test set (a split equivalent to 70%:15%:15% of the 

compounds created by random selection). The purpose of the validation and test sets are to provide two 

independent assessments of any model generated, the validation set allows the selection of the best performing 

methodology and the test set is a check to ensure that this selection has not been influenced by random chance. 

Valid models should perform equally well on both sets whilst a much poorer performance on the test set would 

indicate a biased model or simply a good validation result by random chance. 

The distributions of pKa values in the training, validation and test sets are shown in Figure 1. Distributions of 

simple compound properties for these sets are shown in Figure 2 and one can see that the molecules included 

are distributed more towards the smaller, less functionalised end of the property ranges. However, this is in 

keeping with the dataset construction strategy to include only molecules with unambiguous assignment of pKa 
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values to atomic sites. Despite this, there are representative ‘drug like’ molecules included in the training, 

validation and test sets. Other property distributions are illustrated in Figure S1 in the supplementary 

information which cover the lipophilicity, three dimensionality, and aromaticity. 

 

Figure 1. Plot of the distribution of the experimental pKa values across the data set. The histogram bars are 

coloured according to the proportion of that bar in the training (pink), validation (blue) and test (green) sets. The 

distributions show the relative paucity of pKa values around the 5.5 to 7.5 region as well as those at the 

extremities of the range. 

 

 

a)      b) 
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c)      d) 

Figure 2. Plots of the distributions of simple properties across the training (pink bars), validation (blue bars) and test 

(green bars) sets. a) Molecular weight, b) Rotatable bonds, c) Hydrogen bond acceptors, d) Hydrogen bond donors. 

Figure 3 shows the distribution of the training, validation and test sets relative to the ‘chemical space’ of 

launched small molecule drugs. This shows good coverage of the diversity of drug-like compounds, with the 

exception of steroids (the cluster in the top right) and large macrocyclic and linear peptides (the bottom right 

region). Further analysis of the coverage of the data set relative to launched small molecule drugs, in the space 

of the descriptors used in the modelling process, is provided in Figure S2 in the supplementary information. 

 

Figure 3. A chemical space representation of approximately 1300 launched small molecule drugs (grey points) 

with the compounds in the pKa data set overlaid. The training (pink), validation (blue) and test (green) sets are 

shown. This illustrates that the data set used herein covers a large majority of the small molecule drug space. In 

this plot the proximity of two points represents the structural similarity between the corresponding compounds 

defined using a Tanimoto index based on a 2-dimensional path-based fingerprint. The distribution of points is 

generated using the t-distributed stochastic neighbour embedding algorithm.20 

The full data set, including compound structures, set membership, experimental and predicted data are included 

in the supplementary information.  

Descriptor Calculation  

A single 3-dimensional conformation was generated for each compound using OMEGA.21 If stereochemistry was 

defined in the SMILES then this was maintained in the 3D structure, but if no stereochemistry was defined then 

a single stereochemical configuration was taken from OMEGA. We have found during the course of this research 

that intramolecular H-bonding groups can promote H-transfers during the optimisation steps (especially with 
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the ionised sites) so these groups are, where possible, rotated away from the site of ionisation prior to 

optimisation. Any proton transfer would make the QM descriptors for that system inconsistent with the 

descriptors generated for systems where this transfer does not take place, hence for consistency we alter the 

OMEGA torsions for some substructures prior to optimisation. A list of the SMARTs patterns we use to identify 

these potential problematic sites and torsion modifications applied can be found in TABLE T1 in the 

supplementary information. 

The parent and subsequent structures were optimised using the AM1 Hamiltonian in MOPAC22 without solvent 

corrections, using the following keywords “AM1 EF PRECISE MMOK VECTORS T=3600 CYCLES=1000 EIG-EXOUT 

GEO-OK CHARGE=*” where the charge keyword value ‘*’ was set appropriately for the compound charge state. 

Hydrogen atoms were then added or removed from the parent structure to create the appropriate conjugate 

acid or conjugate base and the Hydrogen atom positions were adjusted as required using OMEGA. This newly 

ionised structure was again optimised through MOPAC and the descriptor calculation repeated. The descriptors 

used capture atomic and bond properties, describing the Hydrogen, heteroatom (X) and all of the heavy atom 

neighbours (R) of the heteroatom in the conjugate acid and base forms for the ionisable site, as illustrated in 

Figure 4. Nucleophilic and electrophilic delocalisabilities (matching those obtained when the “SUPER” keyword22 

is used in recent MOPAC versions), bond lengths and atom charge descriptors were calculated for the 

heteroatom and nearest heavy-atom neighbours. Each of the descriptors calculated for the individual heavy 

atoms, R, were averaged across the n heavy atoms to produce a single value for that descriptor. The HOMO and 

LUMO energies and heats of formation of the conjugate acid and base were also used as descriptors.  

 

Figure 4. The atoms considered in the parameterisation of the model where ‘n’ refers to all the directly bonded 

heavy atoms of the heteroatom X. 

This process was repeated for each site considered as likely to be ionised in a reasonable pKa range. Currently 

alkyl or unsubstituted amide and sulphonamide NH groups and Carbons are excluded; however, these could be 

introduced by the inclusion of accurate pKa determinations to the training set. For polyprotic compounds, each 

site was protonated or deprotonated individually and the most basic and/or most acidic site was identified. A 

second round of calculations was then performed where this primary site was ionised and the other sites were 

examined to determine the second-most basic/acidic site; if the molecule was zwitterionic, the process was 

repeated with the other acidic/basic site charged as this enables a better prediction for the most acidic/basic 

sites. Once these two most acidic/basic sites were determined, a final round of calculations were performed for 

any other isonisable site, with these two sites in their appropriate charge states. These heuristics provide a way 

of capturing the effect of ionisation of the most acidic and basic sites in a molecule on the estimation of the 

acidity/basicity of subsequent sites. 

We are not attempting to explicitly calculate specific micro pKa states of a molecule, with appropriate 

Boltzmann-weighted contributions for each state, as this extends the calculation time and provided little gain in 

accuracy. Our aim, with these heuristics, is to produce a set of predictions from a simple, single QSAR model, 

that are more realistic evaluations of the charge state of a molecule in water and, as such, the ease or otherwise 

of introducing a second or subsequent charged site into a system that already bears a charge (or charges) should 

be considered and predicted appropriately. 
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Model Generation  

Models were generated and tested using the data set and descriptors described above, employing four methods 

implemented in the Auto-Modeller™ module of the StarDrop™ software23: a linear method, partial least square 

(PLS);24 radial basis functions (RBF);25,26 random forests (RF);27 and Gaussian processes (GP) with conjugate 

gradient optimisation of hyperparameters.28  

The best model identified in the study, by the use of an independent validation set, is based on the RBF method. 

RBFs have been praised for their simplicity, robustness and ease of implementation in multivariate scattered 

data approximation. Such techniques have been applied with success in problems ranging from training neural 

networks to image compression and broadening to other disciplines such as engineering.25,26 A radial basis 

function is a non-linear transfer function which aims to approximate a real valued function 𝑦(𝑥) by (𝑥), given 

the set of sample values 𝑌 = {𝑦1, … , 𝑦𝑁} at the points 𝑋 = {𝑥1, … , 𝑥𝑁}. To achieve this, we choose (𝑥) to be 

of the form 

( ) ( )i

N

i i xxax  =
−=

1


, 

where ia
 is a real valued weight, 


 is a basic function and


 denotes the Euclidian distance metric.  Vectors 

ix
 represent N points where the radial basis functions are centred and represent the descriptor vectors for the 

N compounds in the training set. A variety of basis function types may be used, including linear, cubic, multi-

quadratic and Gaussian. Based on previous experiments, the model herein uses a linear function. 

In fitting the RBF to the data, the conventional method is to require that 
( )x

 pass through all the training 

data points, which gives the following linear system of equations:  

( )i

N

i jij xxay  =
−=

1


,  j = 1,…,N. 

This linear system can be solved for the weights
)1(, Niai =

. Then the fitted function 
( )x

 can be used 

for predicting new data points. 

This RBF method can be considered as a generalisation of a k-nearest-neighbour approach to use all N 

compounds in the training set, where the contribution of each training point is weighted by its Euclidean 

distance to a test point. We have found it to be particularly effective where the relevant descriptor space is 

densely populated by training points. However, the RBF method does not extrapolate well beyond these regions, 

so it is important to include an assessment of the domain of applicability of the model. Furthermore, because 

this function is guaranteed to pass through the training points, it is essential to validate the resulting model with 

an independent test set to ensure that it generalises to new compounds and is not over trained.  

Results and Discussion 

The results for the four methods applied to the independent validation and test sets are summarised in Table 1, 

which shows the coefficient of determination (R2), RMSE, Mean Absolute Deviation (MAD), the maximum error, 

and the total number of pKa predictions which exceeded cutoffs at either 1 or 2, 3, 4 or 5 log unit deviations for 

each model. 

The predictions from the different models, in particularly the RBF, GP and RF models were strongly correlated 

and there were no consistent patterns in outliers or mispredictions from any of the models (see Figure S3 in the 

supplementary information). Therefore, the best model was determined to be that derived using the RBF 

methodology and the results on the independent validation and test sets are shown in Figure 5. The remaining 
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analyses, described below, relate to this model. Please note that in cases where multiple potential sites of 

ionisation are present in the same functionality and a clear assignment cannot be made, e.g. a piperazine, both 

were included in the validation and test sets and hence the associated error represents an average between 

these to give a fair assessment. However, including only the closest agreement between the model predictions 

and the experimental value only reduced the RMSE values by around 0.02 in the test set and 0.07 in the 

validation set. 

Table 1. The performance of the models for the independent validation and test sets. The coefficient of 

determination (R2) root-mean-square error (RMSE), mean absolute deviation (MAD), maximum deviation and 

the distribution of erroneous predictions above 1,2,3,4, or 5 log units are shown for each set. GP is Gaussian 

processes, RBF is radial basis function, RF is random forests, PLS is partial least squares 

Method Validation Set Test Set 

 R2 RMSE MAD Max 

Error 

Error 

distribution 

R2 RMSE MAD Max 

Error 

Error 

distribution 

RBF 0.90 1.05 0.65 5.3 80,27,11,4,1 0.92 0.91 0.59 4.2 67,20,6,1,0 

GP 0.86 1.28 0.84 7.4 111,40,15,6,2 0.85 1.21 0.80 6.2 96,38,12,8,4 

RF 0.87 1.25 0.82 5.2 95,33,17,7,2 0.88 1.12 0.74 5.6 95,35,13,4,1 

PLS 0.66 2.0 1.43 9.9 183,92,39,20,11 0.69 1.81 1.32 8.2 183,80,36,21,5 

 

 

 

Figure 5. A plot of predicted versus observed pKa values for the validation (blue points) and test (green points) 

sets using the RBF model. The identity line and lines deviating by 1 log unit are shown as red dotted lines. 

An alternative view of the model performance is to analyse the error distribution, as RMSE values can be 

influenced by a small number of large outliers. For the validation and test sets 34% and 32% of the pKa values 
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are predicted within 0.2 log units; this rises to 68% for the validation and 69% for the test set within 0.6 log units 

and 79% and 83% within 1 log unit respectively (shown in Figure 6) 90% of the validation set has a deviation 

below 1.6 whilst for the test set this deviation is only 1.46 log units. 

 

Figure 6. A plot of absolute deviations for the validation (blue bars) and test (green bars) sets using the RBF 

model. The largest deviations were found to occur for some of the extreme measured pKa values 

The distribution of deviations is very similar for those experimental pKa values that are either above 7, or 7 and 

below, as shown in Figure 7, although it is interesting to see the higher proportion of small deviations in the 

predictions of the test set relative to the validation set for those in the pKa  7 group . 

 

a)      b) 

Figure 7. A plot of absolute deviations for the validation (blue bars) and test (green bars) sets using the RBF model 

for experimental pKa values that are either above 7, or 7 and below; (a) is pKa  7, b) is pKa > 7) 

A more detailed analysis of the distributions of the absolute deviations in prediction relative to the experimental 

pKa is shown in Figure 8. This shows that the extreme pKa values are amongst the poorest predictions, but there 

are a small number of outlier predictions across the pKa range. The median of the absolute deviations dip in the 
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pKa ranges 8-10 and 3.5-5, which coincide with the maxima in the distribution of the experimental pKa values in 

the data set, as shown in Figure 1. This is as expected because of the better representation of these pKa values 

in the training set and is desirable because it suggests that the model will be more accurate for the most relevant 

ranges of pKa. 

 

Figure 1. A box plot showing distributions of absolute deviations of the RBF model predictions as they are 

distributed across the range of experimental pKa values. The boxes are coloured by the data set, with the 

validation set in blue and the test set in green. Attention should be drawn between the shape of this distribution 

and the frequency distribution of experimental pKa values shown in Figure 1. 

The error distributions were also plotted on the chemical space illustrated in Figure 3 and a related space derived 

from the property matrix used to generate the model, however no notable biases in terms of chemical structure 

or atomic property could be identified. This is illustrated in Figure S4 in the supplementary information. 

The speed of the predictions is of interest in the application of this methodology to drug design. The submission 

of the validation and test sets to the model, without prior calculation of the descriptors, resulted in average 

calculation times per molecule of 17 and 20 seconds respectively on a single threaded CPU (Intel® i7-8550U @ 

1.8GHz). Parallelisation of this methodology is eminently feasible and would enable even large collections of 

molecules to be predicted in a reasonable timeframe. A few examples of pharmaceutical or agrochemical 

marketed compounds from the validation set are shown below in Figure 9 along with the approximate time 

taken to predict all the various potential ionisable sites within each molecule, starting from the SMILES string. 

 



 

 10 

Figure 9. A selection of drugs and agrochemicals and the times taken to predict all the perceived ionisable sites 

using the RBF model within the StarDrop™ application23 

The RBF method does not naturally produce a measure of descriptor importance. However, examination of the 

GP model indicates that the average of the R-X bond lengths, the X atom charge in the conjugate base and acid 

forms, the X-H bond length in the conjugate acid, and the nucleophilic delocalisabilities of the X atom in the 

conjugate acid and the average value for this descriptor for the R atoms in the conjugate base form, are 

important in that model (see Figure 2 for the relationship of the R, X atoms at the ionisable site). The PLS model 

also shows similar descriptors with high absolute coefficients indicating a consistent pattern between models. 

Comparison on Benchmarking Data Sets  

This model was further validated by testing against two published data sets. The SAMPL6 data set comprises 24 

kinase inhibitor-like molecules with 31 experimental pKa values and was specifically devised to test pKa prediction 

methods.29 The second was a set of 48 amine-containing drug molecules (53 pKa values) devised by Jensen et al. 30, 

which had been used to evaluate semi-empirical pKa prediction methodologies, similar to that used in this paper. 

 

Figure 10. Plot of predicted versus observed pKa values for the SAMPL6 data set using the RBF model. The identity 

line and lines deviating by 1 log unit are shown as red dotted lines, the compound with the largest misprediction 

is shown. 

The RMSE on the whole SAMPL6 set was 0.85 and the predicted versus observed graph is shown in Figure 10. This 

compares very favourably with the performances of the other methods published in the same journal issue as the 

challenge data set in reference 28, shown in Table 2, where the authors noted that some outliers were removed 

due to sites not being thought of as ionisable or extra modifications were required such as conformational 

sampling. Further submissions to the SAMPL6 challenge are summarised on GitHub31,32 and examination of the 

RMSE values quoted for the 38 submissions listed shows that our model is 4th in the list, which we believe to be 

notable given the poorer performances from many more complex methodologies. None of the compounds from 

this data set were included in the training or validation sets for the models described herein, so this represents a 

fair comparison. 

Table 2. Summary of the performance of published methods on the SAMPL6 benchmarking data set. The method, 

root-mean-square error (RMSE) and comments made by the authors in the corresponding references are shown. 
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Author Method RMSE Comments 

Bannan et al.33 Gaussian process model 2.2 reducing to 1.7 by removing an outlier 

SM06 – an amide anion 

Pracht et al.2 LFER with conf. sampling and DFT 0.68 

 

Prasad et al.34 Hybrid QM/MM with explicit 

solvent 

2.4 “protocol needs work” 

Selwa et al.35 ab initio QM free energies 1.95 

 

Tielker et al.36 EC-RISM 1.7 reducing to 1.5 with improved 

electrostatics and 1.1 with conf. sampling 

Zeng et al.37 M06-2X DFT with SMD solvation 

model 

1.4 falling to 0.73 with linear correction 

 

The results obtained for the set published by Jensen et al.30 are complicated by the presence of some of the 

compounds from this set in the training set of our model. However, the RMSE for the prediction of all of the pKa 

values within the set is 0.98, which rises only slightly to 1.05 for the 45 pKa values not included in our training 

set. These results are equivalent to those obtained by Jensen et al. with solvent corrected values using COSMO 

and either the PM3 or AM1 semi-empirical methods, but only when the zwitterion Cefadroxil is excluded from 

their analysis. 

A graph of predicted versus observed pKa is shown for the Jensen et al.30 data set in Figure 11(a), in which some of 

the outlier compounds are highlighted. These compounds indicate where our methodology might be improved 

either by additional data, or by the higher computational cost incurred by conformational sampling. The amidine 

Phenacaine highlights the relative paucity of acyclic amidines in our training set, whilst the Sparteine structure 

highlights the stabilisation of a protonated structure through internal Hydrogen bonding. Our procedure essentially 

describes the equilibrium between the Hydrogen on the ionisable compound and water, whereas the environment 

of the Hydrogen in Sparteine is influenced by the other Nitrogen within the Sparteine molecule (as shown in Figure 

11(b)). Hence the specific Nitrogen-Hydrogen environment evaluated in our calculations gives rise to a less basic 

prediction than observed experimentally, as the internal H-bond is not captured by molecules in our training set 

and we only consider one conformation of the training and test molecules. The other outliers at the bottom left 

are the second pKa (i.e. the di-protonated pKa) values quoted for Hydroquinine and Procaine respectively; the 

monoprotonated values are predicted within 1 log unit error. 
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a)        b) 

Figure 11. (a) Plot of predicted versus observed pKa for the data set published by Jensen et al30 using the RBF model. 

The identity line and lines deviating by 1 log unit are shown as red dotted lines. Two main outliers, Sparteine and 

Phenacaine are highlighted the other main outliers are secondary rather than primary pka values. (b) a 3-

dimensional conformation of Sparteine illustrating the interaction between the proton and two Nitrogens that is 

not accurately captured by the model, giving rise to an inaccurate prediction. 

Conclusion 

We have described a method combining semi-empirical QM and machine learning methodologies for the prediction 

of pKa for both mono- and poly-protic species. This gives rise to a single model that can be applied reliably across acidic 

and basic functionalities. The model performs as well as more computationally intensive methods on two published 

test sets, which were devised to specifically benchmark pKa prediction methods and cover important areas of drug-

like molecules. Our methodology considers the effects of the whole molecule on the immediate vicinity of the 

ionisable site and therefore incorporates more information about the molecular environment than is considered in 

simple isolated fragment-based QSAR methodologies. The speed of our method is still more than acceptable for the 

calculation of many hundreds of molecules encountered in a drug design or agrochemical optimisation process. 

Supporting Information Available:  A word file containing additional figures relating to the property and error 

distributions within the data set and a table of torsional modifications prior to initial geometry optimisation. A zip file 

of csv format files which contain the compound SMILES strings, experimental pKa data and predicted pKa data from 

the RBF model for the training, validation, and test sets used in the model building. 
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