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Translating Methods from Pharma to
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Overview

e Datasets for pharma, flavours and fragrances

e Chemical Space
- Similarity & diversity

e Multi-parameter optimisation

— Using predictive models

e QSAR model building with Auto-Modeller™

— Case Studies

e Conclusions



Introducing the Data Sets
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Data Sets for Pharma, Flavours & Fragrances

e Marketed Drugs

— 1396 diverse marketed small-molecule drug compounds
— Internal Optibrium dataset

e FlavourNet Database

- 738 flavours compounds

- http://www.flavornet.org/flavornet.html

e Leffingwell Odour Data Set

— 422 fragrance compounds

- http://www.leffingwell.com/chirality/chirality.htm



http://www.flavornet.org/flavornet.html
http://www.leffingwell.com/chirality/chirality.htm

Physicochemical Properties
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Chemical Space
Dataset Similarity & Diversity
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Chemical Space

Marketed Drugs Space

StarDropID 6579 ’~

F

A chemical space allows you
to visualise trends across
your data set

Each point represents one
compound

The closer two points are
the greater their similarity

— Structure
- Properties

A space is defined by a
single data set...

...but other data sets can be
plotted in that space at the
same time

© 2018 Optibrium Ltd. 7



Chemical Space
e A chemical space allows you

to visualise trends across
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Marketed Drug Space

Key
Marketed drugs

FlavouriMet

Leffingwell_Fragrances

Marketed Drugs Space Marketed Drugs Space - Zoom In
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These compounds are not well
defined by the Chemical Space



Combined Chemical Spaces

Key
Marketed drugs

FlavouriMet

e New areas explored by flavours & fragrances

Leffingwell_Fragrances

Property Based Combined Chemical Space
Structure-based Combined Chemistry Space (MW, LogP, Logs, Fsp3)

© 2018 Optibrium Ltd.




Flavours Space

Key
Marketed drugs

FlavouriMet

e Fragrance compound diversity well represented
by flavours space

Leffingwell_Fragrances

Structure-based Combined Chemistry Space FlavourNet Space




Conclusions — Chemical Spaces

e Chemical Spaces for pharma cannot be applied directly to
flavours & fragrances

— Molecules are typically smaller with a higher Fsp3

e Approaches

— Build ‘Global’ Chemical Space in which flavour and fragrance
compounds are well represented

— Build specific Chemical Spaces for flavours and fragrances datasets

e May be possible to share Chemical Spaces between flavours
and fragrances with more success



Multi-parameter Optimisation
Prioritising Compounds with a Balance of Properties,
Predicting Properties
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Multi-parameter Optimisation
Drug Discovery

Hit Drug
A Potency

e |dentify chemistries with an Satfety
optimal balance of properties N Absorption

> .-

= Solubility

8 Metabolic

] ] ] ) ) o stability

e Quickly identify situations >

h P 1
when such a balance is not roperty
possible

Potency

>

Safety

—Fail fast, fail cheap

. N Absorption
-Only when confident 2
_ . L & Metabolic
—Avoid missed opportunities g stability
>
Property 1

No good drug

M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310 (2012)



Multi-parameter Optimisation
Flavours & Fragrances

Odour Fragrance

i : : . A lass
e Identify chemistries with an Safety
' I Vapour
optimal balance of properties N vepour
% Volatility/
3 | detection N
a | threshold Stability
e Quickly identify situations >
when such a balance is not Property 1
possible
A S
afety
—Fail fast, fail cheap
N Vapour
-Only when confident g pressure
<) .
—-Avoid missed opportunities o Stability
>

Property 1
No good fragrance

M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310 (2012)



Probabilistic Scoring

Scoring Profile

Property
B 5HT1a affinity (pki)
M logs
B HIA category
M logP
1 BEB log([brain]:[blocd])
B BEE category
M P-gp category
B hERG pIC50
W 200 pKi
206 affinity category
| PPB90 category

Desired Value

8-> inf [11]

= 1

.
0-35
02->1

+

no
=z 5

-

z b

low medium

low

Importance
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Target Product Profiles

e Pharma e Flavours
- Potency - Potency
- Selectivity o Flavour
e PhySiCOChemical properties o Taste class (sweet, sour, bitter,
o LogP, LogS, MW umami, salt)
- Off-target effects o Taste threshold
o hERG affinity, CYP inhibition — Physicochemical properties
— Distribution o LogP, LogS, MW
o Human intestinal absorption,
Plasma-protein binding, e Fragrances

BBB penetration
- Potency

o Odour class
o Detection level

— Physicochemical properties

o MW, Vapour pressure



StarDrop ™ Predictive Models
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Assessing Predictive Ability
Defining the Domain of Applicability

e The diversity of the
training set defines the
* chemical space of the
model

e The position of a new
compound relative to
chemical space is

. reflected in the
reported confidence in

Descriptor 2

Descriptor 1 the prediction




LogP (octanol/water)

e Predicts the logarithm of the octanol/water partition coefficient
for neutral compounds

e Dataset of 9000 experimental octanol/water partition coefficient
values obtained from the Medchem™ database

e Model statistics on Test Set
- N =2950, R2 =0.92, RMSE,, = 0.44 log units, RMSE,; = 0.63 log units

Dataset % Predictions Within | % Predictions Outside
Chemical Space of Chemical Space of
Model Model

StarDrop Marketed Drugs 91.8 8.2

FlavourNet 98.8 1.2

Leffingwell Fragrances 100 0

*Leo, A., Chem. Reviews, 93(4), 1281-1306 (1993)



Intrinsic Aqueous Solubility (logd)

e Predicts the logarithm of the intrinsic aqueous solubility, S in uM, for
neutral compounds

e Dataset of >3,300 aqueous solubility data points for intrinsic water
solubility, S in uM, defined as the thermodynamic solubility of
uncharged compound in water between 20-30°C. The data comes from
the Syracuse” database

e Model statistics on Test Set
- N =663, R2 =0.82, RMSE,, = 0.70 log units, RMSE,,; = 1.03 log units

Dataset % Predictions Within | % Predictions Outside
Chemical Space of Chemical Space of
Model Model

StarDrop Marketed Drugs 34.4 65.6

FlavourNet 87.7 12.3

Leffingwell Fragrances 86.7 13.3

*Butina, D., & Gola, J. M., J. Chem. Inf. Comput. Sci., 43(3), 837-841.(2003,05)



Conclusions — Predictive Models

e Some properties are important across pharma, flavours and
fragrances

e Where pharma models exist it may be possible to apply
these to flavours and fragrances

- Important to consider Chemical Space of the model (training set)

— Assess uncertainty in predictions

e Where models are not predictive, or no model exists, we
can consider building tailored QSAR models




Building OSAR Models
Auto-Modeller in StarDrop
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Automatic Model Generation

=

train validate test
» PLS [
» RBF |
Build Best
models | model

» GPs

» RF —
Evaluate Test the
models best model

Split data set

Calculate descriptors (2D
SMARTS, logP, TPSA, MW,
charge etc.)

Multiple modelling
techniques

Select the best model by
performance on the
validation set

Test with an independent set




Case Study
FlavourNet Kovats Indices Models




Kovats Indices

e FlavourNet

— 738 fragrance compounds
— Odour type is important for flavours

- Kovats Indices (Gas Chromatography peaks) used in compound
identification

— Compounds with similar volatility may have similar odour profiles

Rsqgr RMSE Rsqr RMSE Rsqr RMSE
PLS Model 0.6839 194.3 0.719 164 0.7667 163.9
0.9976 17.08 0.8351 125.7 0.8723 121.3

Random Forest

. 0.9472 79.45 0.827 128.7 0.839 136.1
Regression Model

0.8778 120.8 0.8291 127.9 0.8794 117.8
GP2DSearch 0.8787 120.4 0.8294 127.8 0.8789 118

http://www.flavornet.org/flavornet.html



Kovats Indices

RBF Model vs OV101_GCpeaks
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http://www.flavornet.org/flavornet.html




Case Study
Leffingwell Odour Threshold Models




Leffingwell Odour Threshold

o Leffingwell

— 422 compounds with odour descriptions and measured detection
threshold

log Odour Threshold (PPB)

120

100

80

60

Number of compounds

40

20

0 —3
-10 - - -4 2 0 2

- 4 8 10
log Odour Threshold (PPB)
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Enantiomer matched pairs

e Enantiomer pairs can have very different odour

— Limonenes and related thiols

e All have citrus-like odours

— Thiols are grapefruit

- Limonenes are orange (+ or R)
or harsh lemon/turpentine like
(- orS)

e Thiols are more odourous
(6 log units)

W name:

W name: (R)-(+)-1-p-menthen-8-thiol
S
. :\\H
o9 Odour Thweshold (166) log Odour Threshokd (PPB) -4.699
I Odour Threshold_original W Odour Threshold_original 0.00002

. N
W name: W name: (S)-(-)-1-p-menthen-8-thiol
S
s :
log Odour Threshold (PPB): log Odour Threshold (PPB): -4.097
Il Odour Threshold_t ongnal .OdowThrshoH_oriJh:l:o 0.00008




Odour Threshold Model

e Decision Trees Categorical
Model

— Log Odour Detection (PPB)

Odour Threshold Category: Obs.
low mid

high

low

o Low:<-3

o Mid:>-3to<1
o High:>1

— Training: Validation: Test
80:1:19 Y-based split

— Test set

Odour Threshold Category: Pred.
mid

high

o Kappa 0.62

o Accuracy 0.76

Confusion Matrix: Test Set




Case Study
Skin Sensitisation Model
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ABSTRACT

Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute
for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an im-
portant parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes
100% skin absorption when experimental data are lacking. This 100% absorption default is not support-
able and alternate default values were proposed. This study aims to develop and validate a practical skin
absorption model {SAM) specific for fragrance material. It estimates skin absorption based on the meth-
odology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux
(Jmax) — namely, 10%, 40%, and 80%. [mzx may be calculated by using QSAR models that determine octanol|
water partition coefficient (K ), water solubility (5) and permeability coefficient (K;). Each of these QSAR
models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was vali-
dated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values
fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied
when fragrance material lack skin absorption data.

© 2014 Published by Elsevier Ltd.




Shen Skin Absorption Model

e Skin absorption is important for assessing systematic exposure to
fragrances in cosmetics

e \When no experimental data, 100% absorption is assumed

e Categorise absorption usingJ_.,

- Formulation independent, theoretically achieved dose based on Fick’s
first law of diffusion

— Jnax = Permeability coefficient (K) * Saturated water solubility (C
- K, is proportional to MW and log K,

Water)

e Shen’s 3-category in-silico semi-quantitative model for J .,
- ‘% Abs <10%’ (Low): J ., <= 0.1 ug/cm?/h
— ‘% Abs 10 - <40%’ (Medium): 0.1 pg/cm?/h <J__ <=10 pg/cm?/h
- ‘% Abs >40 - <80%’ (High):J . > 10 pg/cm?/h

max

© 2018 Optibrium Ltd.




Shen Data Sets

e Fragrance and fragrance-like molecules

e Datasetl

— 105 compounds

- Experimental and calculated values for log K, and log K|

e Dataset?2
— 155 compounds

o 131 compounds

o 24 additional compounds derived by hydrolysis of some of the 131

- Either experimental or calculated values for the key parameters:

logK,,,, log K, log K, corrected, C
%abs experimental

waters Imaxe Categorical %abs estimated and



logP can estimate log K,

7-model LogP Consensus StarDrop™ LogP

log Kow Est. vs log Kow Exp. logP vs log Kow Exp.
5= 51
y = 0.923699x + 0.113392 y = 0.956626x + 0.0736648
R? = 0.964407 > | R2=0.951119
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log Kow Exp. log Kow Exp.



logP can estimate log K,

e Data set 2 (155 compounds)

logP vs log Kow
y = 0.921259x + 0.0639359
R? = 0.94665 i L

Key
. Skin model Shen2014 data Table2
[ log Kow experimental

CALC -
Br

logP

=2 T T T T T T T 1
-2 -1 0 1 2 3 4 5 6

log Kow

e No significant bias towards experimental (brown) vs
calculated (green) data



Modelling J_ ., directly

e J _ datais skewed; therefore model normalized logJ ..,

Jmax log Imax
125
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E g
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2] 8
5 j
8 £
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Log J,,., Model

e Dataset2 (131 compounds) . .
- training:validation:test setsin - . o<
an 80:10:10 ratio N - e
e Best model is GP-RVFS model* T
using 11 descriptors Lol

2
Observed

| Trainingset | Validationset |  Testset
—mm---—--

gAY 0.857 0449 081 0.529 0.849



Log J... Model

Key
e Consistent predictions across the three *  Skinmodel Shen2014 data Table2

J I [ %aAbs Est
., Classes

30 [
< Il
o [
AMG_Skin model Shen2014 LogJmax_Model GPRFVS vs log Jmax
; *1 R2 = 0.85285
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Conclusions

e Pharma, flavours and fragrances all require a similar MPO
approach to identify compounds with a balance of desirable
properties

e Most flavours and fragrances molecules are outside the
pharma Chemical Space

— But flavours and fragrances more similar to each other

e Pharma models can be a good starting point for flavours and
fragrances

— Confirm predictions are within the model’s Domain of Applicability

e Automated QSAR model building can produce robust
models for flavours and fragrances properties

© 2018 Optibrium Ltd.
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