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Abstract  
Better individual and team decision-making should enhance R&D performance.  
Reproducible biases affecting human decision making, known as cognitive biases, are 
well understood by psychologists. These threaten objectivity and balance and so are 
credible causes for continuing unpleasant surprises in Development, and high operating 
costs.  For four of the most common and insidious cognitive biases, we consider the 
risks to R&D decision-making and contrast current practice with use of evidence-based 
medicine by healthcare practitioners.  Feedback on problem solving performance in 
simulated environments could be one of the simplest ways to help teams improve their 
selection of compounds and effective screening sequences. Computational tools that 
encourage objective consideration of all of the available information may also contribute. 
 
Introduction 
Drug discovery leaders receive much conflicting advice on possible ways to improve 
productivity and restore past levels of return on investment [1, 2].  Competition from 
generics has strengthened and there is a lack of low-hanging fruit [3] in terms of 
validated targets for currently untreated diseases.  Continuing investment in predictive 
science and translational medicine, outsourcing of shared services and formation of 
smaller, disease-specific units that bring researchers closer to clinicians, are all current 
trends, together with attempts at continuous improvement.   
 
One common approach to improving productivity, reducing cycle time through restricting 
the volume of on-going work (work-in-progress), will demand particular precision in early 
attrition decisions. The Six Sigma movement, with its heritage in manufacturing, is 
making progress on time and cost saving for repeated discovery tasks [4]. However, 
standard recipes cannot be applied to decision-making within projects that face unique 
challenges and constraints [5].  Even so, senior management cannot afford to ignore the 
human dimension – are their teams making the best possible decisions given the 
information available to them, or that could be available given the right experiments?  
 
Psychology research [6] has proved, again and again, that humans are inherently weak 
at making complex choices and plans, where there are a variety of sources of risk and 
also uncertainty about both the amount of each risk and the potential payoff.  Even 
though efficient reduction of uncertainty is central to good research [7] (once past the 
initial creative stage), many practical researchers remain baffled or confused by 
probabilistic models and so shy away from formal decision analysis.  Yet reliance on gut 
instinct tends to lead to consistent patterns of mistakes.  Human nature means that we 
are all too quick to seize at something that looks initially promising and to run with it 
despite mounting negative evidence; we are over-ready to justify our own past 
decisions, seeking evidence that will support our past judgment rather than critique it; 
and we have short-term memories and attention spans that over-emphasize recent and 
newsworthy information.   
 
What's worse, even when we know these 'thinking traps' [8] or ‘decision traps’ [9] in 
theory, we still continue to fall into them and can only learn to improve through practice 
[10].  Inexperienced bridge players tend to overbid on their first promising hand; for 
them, it is the consequence of letting down their partner, rather than textbook theory, 
which gives effective feedback.  Why should discovery scientists be any different in their 
decision-making habits?    
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Given the long timescale of pharma R&D it is hard, if not impossible, to find out 
empirically and learn what makes for success and failure through personal experience 
alone.  Discovery groups, therefore, need to define and encourage 'best practice' for 
project conduct in a way that captures wider company and industry experience.  There 
is a need to make this as simple and accessible as possible, providing not hard rules but 
guidelines that can be flexed for circumstances, and can be applied within practical 
timescales and under management pressure to make rapid progress.   
 
However, unfamiliar and sometimes counterintuitive concepts are involved.  Success or 
failure can involve more luck than judgment 
(http://www.creatingtechnology.org/biomed/chance.htm) and yet sustained value 
creation relies on placing bets well on the options within each project, over a number of 
projects, most of which will fail along the way [11]. Furthermore, best practice will need 
to be tailored to individual research and disease areas according to the acceptable 
product profile, allowing for differing sources of risk within the relevant chemotypes.  
Many decisions on candidate progression also need to recognise that a target product 
profile, which is a view of future market conditions, is itself subject to error and 
uncertainty. 
 
The move to project-specific screening choices may be a hard transition for 
organisations that have a fixed process culture: “Decision-making is managed 
simplistically by following pre-established, expected outcomes at so-called “go–no-go” 
decision points. It is black and white; the mentality is that there is no need to agonize 
over decisions. Avoiding the thinking process does not serve research well” [12]. 
 
Selecting and maintaining a flexible set of rules for choosing hits, leads and candidates 
is non-trivial given the increasing variety of available tests, including new high-
throughput methods for early ADME and toxicology screening.  The practice of clinical 
medicine faces similar choices - how much screening and early prevention to attempt, 
given that false positives can cause unnecessary anxiety, expense, and actual harm 
(e.g. unwarranted side-effects from prostate surgery in advancing age).  In drug 
discovery, false alarms can mean throwing out perfectly good compounds in error, 
reducing the opportunities to find new therapies and sources of profit.  Both in medical 
practice and discovery, each test also has a cost to be considered, either a variable cost 
or a fractional loading on fixed capacity.   
 
What are the most promising approaches to help teams make decisions in a way that 
optimizes overall discovery performance?  Drawing on our own experience in both 
pharmaceutical research and the application of evidence-based medicine, we consider 
and contrast some of the most relevant sources of cognitive biases and approaches to 
mitigating these.  Each row in the following table summarizes sources of irrational 
decisions that have been studied and confirmed within experimental psychology [13].  
For each source, we will consider evidence and ideas from drug discovery and from the 
practice of medicine, looking at ways of helping people work in a way that is truly 
‘evidence-based’: 
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Bias  Drug discovery 
implications 

Medical implications  

Over-confidence : 
reluctance and/or 
inability to ‘prove a 
negative’, and 
premature closure  

Projects failed too late. 
Insufficiently wide search 
before choosing a lead 
series or candidate. 

Diagnostic error and inappropriate 
course of treatment 

Poor calibration  of 
judgments on 
estimating and 
forecasting 
reliability.   

Inappropriate weight given 
to results from high-
throughput or in silico early 
screening methods, or 
rules of thumb, that may 
too often reject drugs that 
should have survived  

Inadequate attention to the balance 
between the risks of inaction and 
action (e.g. use of biopsies) 

‘Availability’ bias : 
over-attention to the 
vivid and recent, 
with neglect of prior 
information 

Failure to apply and learn 
from the ‘big picture’ of 
industry project successes 
and failures 

New clinicians are too prone to 
consider rare exotic diseases as 
the cause for observed symptoms 

Excess focus on 
certainty when 
considering whether 
to accept one or 
more sources of 
residual risk 

Inefficient use of resources 
when screening across 
multiple risk factors or 
possible indications 

Difficulty in agreement and use of 
clinical guidelines; problems in 
reassuring patients.  

 
 
Over-optimism and premature closure can lead to ins ufficiently wide search 
 
“A person is never happy except at the price of some ignorance” (Anatole France) 
   
The history of science and medicine is full of wrong ideas that prevailed for many years 
despite mounting evidence to the contrary: phlogiston, the four humours, spontaneous 
generation of life, or inheritance of acquired traits. These are examples of ‘confirmation 
bias’, which means that “we tend to subconsciously decide what to do before figuring 
out why we want to do it” [8] and seek evidence that tends to confirm rather than refute 
our initial judgment (see Box 1 for an illustration). In medicine, such ‘bad science’ [14] 
can cost many lives.  Therefore, major institutions and professions have procedures and 
rules, notably peer review, which seek to protect against the pernicious effects of 
excessive self-confidence (setting aside, here, the issue of blatant fraud.)   
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In our direct experience, discovery scientists admit that false optimism helps keep them 
functioning despite the recognized reality that most of their projects fail. This seems an 
essential trait of scientific heroes of the past [12] yet, paradoxically, may count as a 
cognitive error in a business setting [15]: 
 
“Given the high cost of mistakes, it might appear obvious that a rational organization 
should want to base its decisions on unbiased odds, rather than on predictions painted 
in shades of rose. However … optimistic self-delusion is a diagnostic indication of 
mental health and well-being ... The benefits of unrealistic optimism in increasing 
persistence in the face of difficulty have been documented …[16].  The observation that 
realism can be pathological and self-defeating raises troubling questions for the 
management of information and risk in organizations.  Surely, no one would want to be 
governed entirely by wishful fantasies, but is there a point at which truth becomes 
destructive and doubt self-fulfilling?” 
 
Major discovery decisions cover targets, libraries, screening plans, lead series and 
candidate selection.  Each of these has potential thinking traps, notably post-hoc 
rationalization and the tendency to cling too long to an idea, in part owing to considering 
‘sunk costs’ rather than just future costs.  
 
Choosing a target that will correspond to effectiveness in man is still the hardest part of 
drug discovery because of the sheer complexity of physiology and pharmacology and 
the partial nature of scientific understanding of pathways and genomics.  This leads to 
an inevitable element of chance in finding relevant targets; new science is a source of 
unknown unknowns (black swans). 
 
Therefore, when choosing compounds, where there are greater opportunities for 
learning from past experience, it is doubly important to avoid failure from more 
predictable causes, to make a sufficiently complete search amongst alternatives, and to 
use selection rules that incorporate the most recent information on all the targets to 
which binding is observed.  
 
 

Box 1.  What’s the rule? 
 
The sequence 2, 4, 6 is an example that obeys a general rule… but what exactly is this? To 
probe what the rule might be, you can specify other sequences of three numbers and ask if 
they obey the unknown rule. When you’re confident of your hypothesis, you can announce 
what you think it is. 
 
The question is… what sequences would you choose? 
 
When this question was posed by Peter Cathcart Wason [42] in a famous experiment in 1960 
he found that the subjects often announced complex rules after testing their hypothesis with 
sequences that obeyed their hypothetical rule rather than testing their rule with a sequence 
that violated it. 
 
In this example, the general rule was “any ascending sequence”!  
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(a) (b) 

  
(c) (d) 

Figure 1 These ‘chemical space’ maps illustrate the distribution of compounds selected for progression to secondary 
studies in a project. Each point represents a compound and the proximity of points indicates their similarity of 
chemical structure. The grey points illustrate the full diversity of the compounds screened in this project and the 
coloured points show those for further study in chronological order in the order red, green, blue and yellow in plots (a) 
through (d) in groups of approximately 50. The project had difficulty finding a compound with appropriate properties 
and, in light of this, these maps suggest that too much weight was given to the region circled in plot (d) rather than 
searching more widely for a satisfactory compound. 
 
There is evidence within lead discovery and optimization that people trust their judgment 
too much and focus early on what looks promising to them, rather than spreading their 
search widely enough (see Figure 1 for an example). In this project, targeting an orally 
bioavailable compound for a central nervous system (CNS) target, early 
pharmacokinetic (PK) data showed that compounds in the region circled in Figure 1 (d) 
could have either good oral bioavailability or good penetration into the CNS. This 
suggested to the team that similar compounds may exhibit both desirable properties 
simultaneously. Therefore the project returned repeatedly to the same chemistry in the 
expectation that an optimal compound could be found. Only after progressing almost 
200 compounds for detailed in vitro studies and approximately 50 compounds for in vivo 
PK studies was an alternative strategy pursued in earnest. More details on this example 
can be found in Segall et al. [17].  
 
In clinical practice, the pitfall of over-confidence is even more directly a matter of life and 
death.  An analysis of diagnostic error in internal medicine [18] covering 90 injuries, 
including 33 deaths, showed that cognitive factors contributed to diagnostic error in 74% 
of cases: “Premature closure, i.e. the failure to continue considering reasonable 
alternatives after an initial diagnosis was reached, was the single most common cause.” 
 
One important initiative in the UK to encourage evidence-based practice is the Map of 
Medicine (see http://www.mapofmedicine.com ™Hearst Corporation)  Joining up the 
efforts of clinicians in primary and secondary care, this “provides a visualisation of the 
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ideal, evidence-based patient journey for common and important conditions ... The Map 
is a web-based tool that can help drive clinical consensus to improve quality and safety 
in any healthcare organisation”.  The clinical pathways branch according to findings and 
assessments on the individual patient. They include triggers for urgent action (red flags) 
and criteria to be applied in the choice between diagnostic testing, which may involve 
referral to specialists, or a ‘wait and see’ approach.  Individual clinicians can provide 
feedback on any pathway to an expert panel and curation of pathways is now taking 
place at the local level to reflect availability of resources such as expert physiotherapy 
that can avoid the need for referral to hospitals (e.g. for joint injections). Many of these 
pathways are also now directly available to patients (e.g. 
http://healthguides.mapofmedicine.com/choices/map/index.html ) to help reassure them 
about their treatment path. 
 
An equivalent system for pharmaceutical R&D would consist of curated, evidence-based 
screening plans: a library of screening pathway options with criteria and interactive 
support for individual projects to make appropriate modifications to meet their needs.  A 
hard challenge for today’s project teams and managers is how – given what may be 
limited method calibration data relevant to their new project and judgments based on 
extrapolation from previous experience – to work out the right screening pathway to 
choose, that balances the risks and consequences of false positives and of false 
negatives and uses overall resources (including time) wisely. 
 
Poor calibration of the quality of predictions can lead to faulty balance between 
the risks of action and inaction 
 
‘Prediction is very difficult, especially if it’s about the future’ (Niels Bohr) 
 
A particular kind of over-confidence applies to estimates about the future.  Individuals’ 
calibration of the quality of their own predictions is notably inaccurate [19].  People 
asked to make an estimate or prediction – say, the closing value of a stock market index 
on the following day – and then asked to give a range that, 95% of the time, will include 
the correct answer, consistently provide too small a range. Therefore, in drug discovery, 
decision-makers considering how to eliminate compounds with undesirable properties 
are likely to underestimate the importance of understanding the trade-off between false 
negatives and false positives [20].  This means they will tend to incur excessive costs of 
late failures or will lose opportunities to develop valuable products.   
 
Over-confidence in the power of one’s methods can happen within Development as well 
as in Discovery.  “The constant accrual of new data requires an ongoing assessment of 
the benefit/risk profile of a compound to be made and for predictions … to be adjusted 
… These decisions are difficult to calibrate and can have profound sequelae” [3]. For 
example, the sustained and expensive lack of success in clinical development within 
certain therapeutic areas such as stroke mitigation (other than thrombolysis) [21] might 
be due to one or more of:  

• unrealistic levels of optimism,  
• too much faith in animal models [22] (a human lesion can be larger than a rat 

brain, or even a whole rat) 
• publication bias in favour of positive results for animal trials.[23] 
• a lack of basic understanding of the causal factors at work [24] 
• inadequate statistical power in the experiments and trials [25] 
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Cognitive biases are deeply ingrained and hard to overcome in medical practice [26], as 
well as within research. Individual awareness of calibration bias is not enough to 
sidestep it.  More effective measures could include team review, computer-assisted 
presentation of relevant information [27], or practice in a realistic but safe environment 
with accelerated feedback using a reference class of problems that are similar to the 
ones the team is likely to face.  For example, in the final stages of radiology training and 
beyond, practitioners are encouraged to calibrate their judgment on examples of test 
cases. This helps them to understand how good they are at making judgments based on 
partial data, so they can accordingly base their advice to discharge or progress the 
patient to invasive tests or treatment.  For breast cancer radiographic screening in the 
UK there is a 'round robin' exchange of blinded test cases, selected to cover the full 
range of required diagnostic discrimination, with feedback on achieved performance 
[28]:  "Tracking and reporting critical outcome measures, such as sensitivity, specificity, 
size and stage of tumors detected, interval cancer rates, and time to recall and 
diagnosis, have been used in many countries to improve screening performance."   
 
Many examples, with feedback, are needed to improve the ability to reflect accurately on 
how well they know what they know. Accuracy tends to improve through repetitive 
forecasting with short-term feedback – such as weather forecasting – relative to single, 
one-off forecasts [29]. This is a particular challenge for pharmaceutical R&D, given that 
many years may elapse between choice of target and validation of that target within 
Phase 2 trials. 
 
This makes it essential to transfer experience from one project that can look back on its 
mistakes to another that still has the chance to learn.  This learning often cannot be 
about project specifics, given the variety between projects.  Instead, it is 
‘metaknowledge’: reasoning ability about how much we know and still need to know (a 
form of wisdom, according to Plato). Such knowledge will be under broad headings − 
such as sources and collective estimates of risk, practical reliability of predictive 
methods, and reasons why predictions may be confounded − rather than knowledge 
about specific targets.  Hence, practical support for better R&D decision-making has to 
enhance the scientific method of sceptical enquiry rather than attempt in any way to 
replace or automate it. 
 
R&D decision-making and planning skills can be built up from exploring problems that 
capture key elements of the structure of the real-world challenges; for example the need 
to consider impact of possible errors in predictions.  Many scientists prefer to learn by 
doing rather than from theory.  If feedback is sufficiently rapid, this will also be more 
effective in overcoming built-in biases. Training simulations which capture essentials of 
the cognitive challenge, and provide feedback on performance are sometimes referred 
to as ‘microworlds’. These have been used with success for training medical teams, 
especially for emergency response, for which experience is not routinely available and 
the real world does not give time to reflect and mentally rehearse courses of action 
before that action is needed [30]. Figure 2 illustrates such a microworld intended to 
support reasoning and judgment within drug discovery teams deciding on a screening 
strategy.  The interactive version can be accessed without charge at 
http://www.tessella.com/screening-strategy-explorer.   Considering just one source of 
hazard within this example, quantitative analysis of potential screening cascades can 
identify the most effective option.  Formally, this maximizes the expected return on 
pipeline opportunities and on resource use within screening (which must also include 
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investment of elapsed time).   Estimating screening cost, downstream failure cost and 
value of a safe compound often presents an obstacle for teams early in the R&D 
process. Fortunately, the cost variables need be considered only in terms of ratios to 
potential value. Furthermore, all feasible combinations of these ratios are viewed at the 
same time, so that teams can easily see for themselves whether these quantities 
statistically significantly impact the best decision and then make judgments, or obtain 
better estimates, accordingly. 
 
 

 
 

(a)            (b) 
Figure 2.  Presentation of the best screening strategies against a single hazard.  The strategies employ two 
independent methods that have pass/fail outcomes and can be combined in sequence either as a double filter 
(progressing compounds that pass both methods) or using the sentinel approach (which terminates only those 
compounds that fail both methods). The plots reveal an analysis of the possible screening strategies: (a) sensitivity of 
best strategy to the two main cost parameters defined relative to the value of a successful compound, and (b) 
visualisation of the impact on pipeline value of the different strategies.  Where two tests are used in sequence, the 
first is in silico and the second in vitro.  The in silico cost per compound is assumed to be negligible. 
   
X axis: the cost of a downstream failure due to this hazard, relative to the net value of a safe compound that has 
reached the same point in development  
Y axis: the cost per compound of the in vitro test relative to the net value of a safe compound exiting from screening 
Z axis: the value of each screening strategy relative to the ideal strategy which would filter out all truly unsafe 
compounds at zero cost.  This ideal strategy value is reduced by the cost of compound screening, the pipeline 
impacts of false alerts (lost value potential), and missed alerts (incurring increased downstream cost of avoidable 
failure) 
 
In this example, the model parameters are 

• Prevalence of the toxicity problem in the population of unscreened compounds: 20%  
• Sensitivity of the tests: 70% for in silico and 90% for in vitro 
• Specificity: 90% for in silico and 98% for in vitro 

  
The broad orange region arrowed, at realistically low values of Y, indicates that the ‘sentinel‘ combination of in silico 
and in vitro screens will usually be favoured over either alone at these values of risk and method performance, unless 
the in vitro testing cost is particularly low.  The ‘double filter’ strategy (red plane in b) never outperforms the ‘sentinel’ 
strategy, at any combination of cost or value, for this (or lower levels of) risk.  The strategy of using no safety testing 
(green plane) ahead of the in vivo (regulatory) safety assessment appears a realistic one for relatively high-value 
projects (where X tends to be low), due to the impact of false alerts from both the available in silico and in vitro 
methods.   This ‘no screen’ strategy demands an acceptable opportunity cost of late failure, for example through use 
of multiple parallel candidates. 
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From our experience so far, using this simulation and in previous assessment of in silico 
toxicity methods, unaided teams are liable (at typically low underlying probabilities of a 
hazard) to miss a robust screening option, the ‘sentinel approach’. This combination, 
wherein failures on both the in silico and the in vitro methods are needed to reject a 
compound or series, throws few false alerts, and can therefore take advantage of a pass 
hurdle (cut-off) which favours sensitivity over specificity (see for example 
http://www.aapspharmaceutica.com/meetings/files/36/Kreatsoulas.ppt#302,14,Performa
nce Assessment: Has DEREK been Improved?).   
 
Vivid and recent events can unduly dominate thinkin g about relative risk 
 
‘Those who cannot learn from history are doomed to repeat it’ (George Santayana) 
 
Individuals are biased towards recent, vivid experience and tend to ignore relevant 
information on long-run chances of a problem.  As an illustration of this, it is believed 
that more people died on the roads after 9/11, as a result of increased road traffic 
caused by avoiding airline travel, than in the airplanes deliberately crashed.  The many 
small tragedies are less vivid and available to the individual decision-maker than the one 
large and vivid event, distorting assessments of relative risk. 
 
There is an especial danger that pharmaceutical research, always looking for better 
ways of working, will pay too much attention to recent information rather than the sum of 
all relevant data.  This cognitive ‘availability bias’ is sometimes termed ‘neglect of the 
prior.’ The prior is the underlying probability of occurrence of an event in the absence of 
new evidence.   
 
Team members can also be over-influenced in their own beliefs by the opinions of 
outspoken or powerful individuals, hence: “It is more important than ever that a leader's 
ability to make decisions be based on an understanding of probability with a capacity to 
recalibrate one's perspective in the light of novel information − so-called Bayesian 
thinking [3]” 
 
People often do not factor in the track record of reliability of a prediction or diagnosis 
when acting on its conclusion; there is a tendency to put too much weight on this 
specific, recent information and not enough on prior information such as past outcomes 
for similar compounds or patients. If prediction reliability is not well known then there is 
the additional need to avoid the trap of calibration bias, which will tend to over-estimate 
this reliability and so further discount the relevance of the prior.  
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In medicinal chemistry, one danger from availability bias is excessive attrition to the 
pipeline through placing too much reliance on faint but uncertain signals of, for example, 
toxicity, as illustrated by the question in Box 2. (The answer appears in ref [31]). 
Gigerenzer [32] and others have shown that probability ratios expressed as natural 
frequencies e.g. 2 out of 1000, tend to lead to better judgments than the percentages 
provided in this example.) 
 
Unless there is diversity to spare, these hazard early warning signals need to be 
handled with care and, where they would restrict choices on the way forward, should be 
trusted as the sole basis for decisions only for very reliable predictions, so long as it is 
ethical to do so (i.e. where a later regulatory animal test can be relied on to protect 
subsequent human volunteers).   
 
This dilemma faced by discovery scientists – whether to abandon a line of research 
because of some predicted risk – is also common in medicine, especially in routine non-
invasive screening.  For example, when questioned on the diagnostic weight of positive 
AIDS test results or breast cancer signs in younger women, a majority of medical 
students considerably overestimate the fraction of alerts that are genuine through 
neglect of the information about frequency in the overall population.  Given some level 
of a signal indicating a potential problem, the question is, how aggressively to follow up. 
A false positive means worry to the patient and the pain and accompanying (small) risk 
of a follow-up biopsy or other invasive test; a false negative could delay the definite 
confirmation and possible cure of a serious or fatal disease.   
 
In medicine, it is well known that recently qualified practitioners have a tendency to over-
diagnose exotic but rare conditions which they have heard about during training - as if 
every day was an episode of the television medical drama 'House'.  Where a symptom 
could be of a rare tropical fever, or an unusual presentation of flu, more experienced 
doctors will opt for the diagnosis of flu. 
 
The correct decision stance depends in part on the consequences of a mistaken 
assessment.  It also depends on good use of information on prevalence of the problem 
in a suitable reference population (similar patients, or similar projects).  Choosing the 
reference population for a drug discovery project is non-trivial, as the larger the sample 
size the less relevant some of the past examples may be to the biological, chemical or 
developability challenges within the current project. 
 

Box 2.  How well does this test conserve your compound options? 
 
You have purchased a series of compounds, within which you expect 1% have a particular kind 
of toxicity. You apply a screening method to all the compounds that is 90% reliable (both 90% 
sensitive and 90% specific: this means that if a compound is genuinely toxic there is a 90% 
probability of detecting this, and if it is not toxic, there is a 90% probability that the test will 
report the compound as being safe). 
 
What percentage of the compounds that fail the screening genuinely have the toxicity? 

a) About 1% 
b) About 2% 
c) About 10% 
d) About 50% 
e) About 90% 
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Decision-making on choice of compounds and on choice of further screening therefore 
has to be based on a mix of evidence and judgment.  Teams can be helped in their 
reasoning and synthesis of the evidence through interactive data mining and through 
‘what-if’ analysis of pipeline filtering options using cascade simulations or more rapid, 
but often less intuitive, decision tree approaches.  Prior probabilities will be an important 
input for such ‘what-if’ simulation systems.  Estimated probabilities for different hazards, 
or for predictive method error, need to be taken not only from industry benchmarking 
(which reflects the outcomes of current screening practices) but also from a proportion 
of in-house effort dedicated to breaking the normal rules (within ethical limits), following 
up seemingly unpromising options, and helping to calibrate both risk and the reliability of 
the current screening strategy.  Such exploration efforts will also be accompanied by a 
small percentage of pleasant surprises – drugs that turned out safe and active despite 
initial appearances.  
 
Robert deWitte [33] has compared drug discovery to the Tour de France; the overall 
winner need not have won in any one event, but is an ‘all-rounder’ over both the 
mountains and the sprint stages. There is a need for a balanced judgment, taking into 
account the several desirable characteristics of a drug, and the degree of certainty 
about quality on each of these criteria from the evidence accumulated to date.  This is a 
form of ‘multi-attribute’ decision making. 
 
An excessive focus on certainty sometimes warps the  distribution of effort 
 
“I prefer the errors of enthusiasm to the indifference of wisdom” (Anatole France) 
 
One of the less-recognized, but consistent, errors in multi-attribute human decision-
making is an excessive focus on certainty [34].  The psychologists Daniel Kahneman 
and Amos Tversky developed an empirical model of how people actually take decisions 
under risk, termed ‘Prospect theory’.  In this model, people are more sensitive to 
changes in probabilities around 0 and 1 than, logically, they should be.  We seem at the 
same time to be both risk-averse and risk-seeking; we might buy both insurance (to be 
sure of avoiding a loss, when perhaps we could afford to absorb it) and also a lottery 
ticket (overvaluing a low probability of gain).  Both might involve overestimating the 
importance of probabilities that are close to zero.  
 
There have been many academic and practical studies of multi-attribute decision-
making.  One notable conclusion has been that human decision-makers or ‘judges’ are 
inconsistent even in applying the rules they would describe if questioned on the basis for 
their decisions [35]: “the overwhelming conclusion, including studies of clinical judgment, 
was that the linear model of the judge’s behaviour outperformed the judge.”  
 
A rational approach to screening systematically improves the odds through a cascade of 
risk assessments of increasing precision, taking first in sequence [36] the lower-cost and 
faster tests that are able to fail more bad compounds, provided the tests are sufficiently 
reliable.  Many factors can be considered in parallel if the methods have a low enough 
cost and provide complementary information. This tends to spread the effort for risk 
reduction across many possible causes of failure, overcoming the bias towards seeking 
certainty on just the factor that leads to the most frequent late failures.  An improvement 
in chance of success from 50% to 60% on one risk factor is worth just as much as an 
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improvement from 90% to 100% on another of equal impact, in this model of research 
performance.   
 
One method of applying an efficient mix of methods is the probabilistic scoring approach 
employed by the StarDrop™ software platform to guide compound selection decisions in 
drug discovery. A probabilistic score indicates the likelihood of success of a compound 
against a set of property criteria, given the available property data for that compound 
and taking into account the underlying uncertainty in the data. The criteria might have 
different degrees of importance because, in practice, it might be appropriate to make a 
trade-off between properties if an ideal compound is not available (see Figure 3 for an 
illustration). Furthermore, uncertainties in the overall score are calculated and can be 
used to establish when one molecule can be confidently chosen over another [37] . 
  

 
 
Figure 3. Example scoring profile, showing the ideal criteria and their relative importances (red bar). Furthermore, 
trade-offs can be defined that are more subtle than simple pass/fail criteria, because a scoring profile could contain 
more complex functions for each property representing a range of acceptability over the property value range. A 
gradual decline in quality relative to logP is shown, whereby a gradient has been specified between logP values of 3.5 
and 5.0. 

 
Here too the benefit of learning from experience is important, both in understanding the 
uncertainties inherent in different data sources and also, for each property, the 
relevance of a negative indication to clinical and commercial outcomes.  The experience 
on predictive validity is transferable between projects; reasoning about outcomes will 
also require judgment on a project-by-project basis. Therefore, as discussed above, a 
proportion of effort should be dedicated to calibrate the risks due to each factor. A 
further advantage of this approach is that, if evidence arises that indicates that these 
assessments of risk should be revised; it is easy to rapidly assess the sensitivity of the 
choice of compound to any changes [38].  
 
The advantage of explicitly considering a broader range of properties is illustrated in 
Figure 4(c), where compounds from a project have been scored for a balance of 
potency, selectivity and ADME properties. Comparing this prioritisation with that 
resulting from a narrow focus on potency and selectivity, as illustrated in Figures 4(a) 
and 4(b), shows notable differences in the compounds that would be selected. In 
particular, the second compound in the list, XXX518, which had previously been 
rejected, subsequently demonstrated a significantly improved in vivo profile over those 
compounds selected on the basis of potency and selectivity alone.  
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(a) (b) (c) 
   

Figure 4 . Tables illustrating three different views of the data for a single project.  
(a) Cells are coloured green if the compound ‘passes’ the required threshold for a property and red if it ‘fails’ according to the experimental data, but ignoring the 

uncertainty in the data. The pass thresholds applied are for potency (pIC50>6) and selectivity [log(selectivity)>0.9, equivalent to a factor of 8]. 
(b) In this case, the uncertainties in the data are taken into account and the cells are coloured according to the probability that the compound passes the threshold for 

each property, from green (100%) to red (0%). The uncertainties in this case were estimated to be 0.5 log units for potency and 0.7 log units for selectivity. The 
compounds are ordered according to the probability that they pass the thresholds for both properties. When considered in this way, the ranking of some compounds 
changes significantly, as shown by the arrows for illustrative examples. 

(c) This table illustrates the effect of considering a broader view of the available data. In this case, compounds are ranked according to potency and selectivity, as in (a) 
and (b), but also solubility (threshold > 100µM) and stability in human and rat liver microsomes (threshold < 60%). The relative importance of these properties is also 
considered using the probabilistic scoring algorithm in StarDrop. When taking all of these properties into account, the effect on the selection of compounds is dramatic.
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Prioritizing or weighting scoring criteria requires some common measure of impact: a 
metric to compare the factors being scored.  Increasingly, health technologies are being 
chosen according to the value of information that they can provide [39].  Planning of 
experiments or the sequence of experiments [40] has an exact analogy with derivation of 
Clinical Practice Guidelines (CPG’s).  Gillian Sanders at Stanford has published powerful 
ways of deriving CPG’s via decision trees and systematic capture of assumptions and 
evidence [41].  These ideas are catching on in the clinical community, and we believe that 
drug researchers will follow. 
 
Conclusion 
 
As governments, insurers and health management organisations converge on outcome 
measures, such as a ‘quality adjusted life year’, we believe that the goals of 
pharmaceutical researchers, always broadly aligned with saving of life and suffering, will 
focus even more on medical benefit and so will become sharper and more useful as 
ultimate criteria for decision-making.  Given these sharper goals, which are more 
scientifically accessible than a distrusted forecast of market potential or profit, there 
remains the challenge of making decisions that reach those goals as often as possible 
within the available resources. 
  
Medicines have often been scarce in the past and even in the modern developed world are 
subject to some economic or policy-based principles of rationing.  Discovery research has 
for long seemed to be in a world of plenty, but that world has changed.  Learning to do 
more with the same, or with less, needs to be accelerated.  
 
Only people can make good decisions.   Helping people to reason better, to take on board 
the experiences of the past and to consider a wider range of options, requires special 
training and new approaches to analysing and presenting potential choices.  The medical 
field is increasingly using a mix of new presentations of information (maps showing the 
choices of evidence-based paths) and simulations that provide rapid feedback on the 
actions that tend to succeed, or tend to fail, in the long run despite the confusing elements 
of chance.  We think that pharmaceutical R&D needs to follow the same direction. 
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