Predictive ADME Models in Drug Discovery: Can You Trust Them? Can You Afford Not To?

Alan Beresford (PhD)

Senior Research Fellow

11 October 2007

Drug Discovery: Requires Prediction

Potent
Selective
Effective
Safe

Med Chem

Novel Pure COG Safe **ADMEt**

Appropriate PK Safe

No.

Drug Discovery: ADME Prediction

In Silico

Credibility?

Global Models

- Cover as much chemical diversity as possible
- Capture 'long-range' trends in properties
- May not differentiate between close analogues

Local Models

- Based on data for specific chemistry
- May provide higher resolution for that chemistry
- Outside of 'chemical space' may rapidly lose predictive power

In Silico

User Interface: ADMEnsa Interactive™

In Silico

CYP1A2 Local Model build

- Training Set Results:
 - > 55 compounds
 - > 89% of the training compounds are correctly classified.
 - 18% false negative i.e. observed low predicted high.
 - 4% false positive i.e. observed high predicted low.

Training	Predicted Low	Predicted High	%correctly classify
Observed Low	25	5	0.83
Observed High	1	24	0.96
% Compounds correctly assigned within a predicted class.	0.96	0.82	

Likely error in prediction is "known"

- 79% validation compounds correctly classified
- 82% tests compounds correctly classified
- No false positive:
 - Highly confident in prediction Low
- Average false negative = 32%
 - ~32% of the predicted high could be observed low.

Validation	Predicted Low	Predicted High	%correctly classify
Observed Low	8	4	0.67
Observed High	0	7	100
% Compounds correctly assigned within a predicted class.	100	0.63	

Test	Predicted Low	Predicted High	%correctly classify
Observed Low	6	3	0.67
Observed High	0	8	100
% Compounds correctly assigned within a predicted class.	100	0.73	

In Silico

Score and rank compounds against **Target Product Profile**

User-defined scoring profile

User Interface: ADMEnsa Interactive™

Sho

Filtering

Probabilistic Scoring

Probabilistic Scoring Score, Uncertainty and Rank

Score: The best estimate of the likelihood of success of a compound against the scoring criteria.

Standard deviation: A measure of the uncertainty in this estimate.

Rank: A 'utility value' enabling compounds to be ranked in order of priority, based on a combination of score and uncertainty

In Silico

Overview of Entire Library against Target Product Profile

CONFIDENTIAL

Risk of poor oral bioavailability?

Colour-coded Rank Order in "Chemical Space" hERG IC50

"Good" compounds concentrated to right-centre of space as plotted

Limited proportion of soluble compounds

Limited no. of individual compounds pass most criteria

MDDR 20,000 random selection: scored for

A Galápagos Company

Criteria

>1uM

Colour-coded Rank Order in "Chemical Space"

Colour-coded Rank Order in "Chemical Space" hERG IC50

Proportion of compounds passing Criteria

Criteria

Absorption Aq. Solubility

Calc. logP

2D6 IC50

2C9 IC50

>1uM

< 3.5

>1uM

>1uM

>100uM

Higher proportion of compounds passing each criterion relative to MDDR set

Increased proportion of individual compounds passing most criteria

But – a number of compounds which would not appear to be good starting points in an oral drug discovery programme!

A Galapagos Company

ADMEnsa Routine In Vitro Assays

- Solubility
- LogD
- pKa
- CHI
- PAMPA
- Plasma stability
- Plasma protein binding
- Liver microsomal stability (Phase I and Glucuronidation)
- Liver S9 metabolism
- CYP450 metabolism
- UGT metabolism
- Enzyme kinetics
- P450 inhibition
- Time-dependent inhibition

- Hepatocyte stability
- Caco-2
- P-gp ATPase activity
- hERG
- Cytotoxicity

Percent inhibition and standard deviation: CYP3A4 test set using testosterone as probe substrate

Sp

Drug Discovery: ADME Prediction

Screening cascade: Oral dose, CNS target

In Vitro

Score and rank compounds against **Target Product Profile**

User-defined scoring profile

User Interface: ADMEnsa Interactive™

In Vitro

Assessment of ADME risk against Target Product Profile

In Vivo

Rat oral "cassette" dosing

70

Drug Discovery: ADME Prediction In Vivo

LEAD MOLECULE SELECTED FOR PROGRESSION

	RAT	DOG	MAN
CI (ml/min/kg)	40	6	8 (14)?
Vd (L/kg)	4	6	5 ?
T1/2 (min)	70	700	430 (250)?
F (%)	45	118	80?

In Vitro- In Vivo

		Half-Life	(minutes)	
	Mouse	Rat	Dog	Human
Liver microsomes (1 µM)	6	8	55	91
Hepatocytes (1 μM)	>200	>200	>200	>200
In vivo	35	70	700	?

|--|

Allometric Scaling

Credibility?

B = Dog

C = Monkey

60

40

20

A Galapagos Company

In Silico

- **Numbers unlimited**
- No synthesis required
- Can be based on historical human data
- Flag potential risks for high priority lab testing
- Gauge the challenge of achieving the TPP
- **Guide chemistry to "low risk" areas for TPP**
- Why wouldn't you? (If "usual" ADME rules apply)

A Galapagos Company

CONFIDEIVITAL

All libraries on Approved drug space

In Vivo

In Vivo Models 1 Compound **Limited compound numbers Complex interactions** Assess the real challenges for achieving TPP Flag primary risks for testing in man Are the tests relevant for your TPP?

7/2

ADME Models in Drug Discovery

Acknowledgements:

Joelle Gola

Matt Segall

Dawn Yates

Thank You for Your Attention

