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In this example we will use the Profile Builder in StarDrop’s MPO Explorer module to derive a multi-
parameter scoring profile, based on a data set initially described by Wager et al. [ACS Chem.
Neurosci. 1 p. 435 (2010)]. The authors used this data set to develop a multi-parameter optimisation
method for selection of compounds intended for CNS indications. The ‘CNS MPO score’ derived by
Wager et al. is calculated as the sum of the values of desirability functions for six physicochemical
parameters, calculated logP (clogP), calculated logD at pH 7.4 (clogD), molecular weight (MW),
topological polar surface area (TPSA), number of hydrogen bond donors (HBD) and the pKa of the
most basic center (pKa), resulting in a value between 0 and 6. The authors compared the CNS MPO
score for a set of 119 marketed drugs for CNS targets with 108 Pfizer CNS candidates and found that
74% of the marketed drugs achieved a desirability score of > 4 compared with only 60% of the Pfizer
candidates.

The scoring profile derived by MPO Explorer will contain one or more rules corresponding to
combinations of properties that significantly increase the chances of identifying a drug and we will
compare these with the results of the CNS MPO score.

Exercise

® Start StarDrop
® From the File->Open menu item, open the file CNS MPO.add.
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The data set contains 227 compounds, 119 drugs for CNS targets and 108 Pfizer development
candidates that did not reach the market (published by Wager et al.).

For each compound, 6 properties have been previously calculated, labelled MW, CLOGP, TPSA,
CLOGD, HBD and PKA, as described in the introduction.
defined in Wager et al. is also included in the data set.

For comparison, the CNS MPO score, as
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Click Next to move onto the Set Selection page.

Here we can define the parameters for splitting the
data set into training, validation and test sets. In this
case, we will use the defaults, putting 70% of the
compounds into the training set and 30% into the
validation set. Ideally, we would like an external test
set, but given the small size of the data set, it is not
practical in this case. Click Next.

On the Select Properties page (shown right) we can
choose the properties that we would like to explore to
identify a scoring profile. In this case, we would like to
use the 6 simple compound properties, as described
above. However, we should un-tick the CNS MPO score
property, as shown right, to avoid using this.

Click Next to move onto the last page of the wizard.

The Profile Parameters page enables us to specify
some additional conditions. In this case, we will use
the default minimum profile coverage of 20% (i.e.
we will only consider rules that are applicable to
>20% of the compounds in the data set).

Set the Minimum desirable category to Drug. This is
used to calculate the performance statistics for the
rule’s ability to distinguish desirable and undesirable
outcomes. This parameter is most useful if the
objective is a continuous property or has more than
two categories.

Finally, click Finish to begin the profile building
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Once the first rule has been found, this will be displayed within the MPO Explorer profile analysis
window, as shown below.
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The rule is shown in the top-right. In this case, the rule suggests that compounds with a MW < 322
and a most basic PKA < 9.9 and a CLOGP < 3.33 will have an increased chance of success. The criteria
for MW and PKA are slightly more important than CLOGP. (Note: the exact values you see will
depend upon the precision you have specified for displaying numbers in the preferences)

Below this, the statistics for the corresponding multi-parameter rule can be seen; in this case the
mean improvement for compounds obeying the rule is >67%, i.e. compounds that meet these
property criteria have a 67% greater chance of being a drug than a compound selected randomly
from the set. If you hover your mouse over this statistic a tool-tip will display additional information;
in this case the p-value for this rule is 0.0002 suggesting that it is highly statistically significant and
the odds ratio is 10.4, which means that compounds meeting all three property criteria have a ~10x
higher chance of success than compounds that do not. A detailed report on the statistics can be
generated by clicking the View Report button.

On the left, plots show the rule in property space corresponding to the property criteria. The
properties that are shown are controlled by the tick boxes in the bottom right of the analysis tool. In
each plot, the blue lines indicate the boundaries implied by the rules. These boundaries can be
dragged to modify the criteria and the statistics will be updated instantly. The compounds in the
training set are represented by circles and those in the validation set by ‘x’. Desirable compounds
(i.e. drugs) are shown in yellow and undesirable compounds (i.e. unsuccessful candidates) are shown
in red. Grey points indicate compounds which have been filtered out by criteria other than those
represented in the plot.

® In this case, we will accept the rule that has been generated automatically. To search for a
second rule, click Find Next.
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The second rule, shown above, depends only on CLOGD and PKA. In this case the mean
improvement is only 21% and the corresponding p-value is 0.15, suggesting that this rule is not
statistically significant. Therefore, we will reject this rule by clicking Discard.

® The final profile, which in this case contains just one rule, will be displayed and we can
accept this by clicking OK.

The scoring profile will be displayed in the Scoring tab in StarDrop. As with any scoring profile, we
can modify, rename or save the profile. Clicking Analyse under MPO Explorer will return to the MPO
Explorer profile analysis tool. (Note: you can analyse any scoring profile, not only those built using
MPO Explorer's Profile Builder).

® Run the new scoring profile on the full data set by clicking the button on the Scoring
tab. (Note: you can ignore the warning about data with zero uncertainty).
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We can compare the performance of this scoring profile with the CNS MPO score by plotting a
Receiver Operating Characteristic (ROC) plot.

® Select the Visualisation tab in StarDrop.

® Click on the button to generate a ROC plot. Choose Set as the property and Drug as the
desired result and use the new score Scoring profile — Set as the classifier, as shown below.
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We would like to see a ROC curve above the black identify line (which corresponds to the
performance of a random selection) and ideally as close to the top-left corner as possible. A higher
area under the curve (AUC) corresponds to better predictive performance. For more details of ROC
plots, see http://en.wikipedia.org/wiki/Receiver operating characteristic.

Here we can see that the AUC for the scoring profile we have generated is 0.69. We can compare
this performance with that of the CNS MPO score.


http://en.wikipedia.org/wiki/Receiver_operating_characteristic

® Detach the ROC plot for the scoring profile by clicking the button in the bottom right of
the Visualisation tab.

® On the Visualisation tab, change the Classifier to CNS MPO score to create a ROC curve
showing the performance of CNS MPO score, as shown below:
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From this, we can see that the perfomance of CNS MPO score is not as good as the scoring profile we
have generated because the ROC curve is closer to the identity line and the AUC is lower.

This is not a fair test of CNS MPO score and the new scoring profile that we have derived for two
reasons:

® Compounds nominated as clinical candidates will generally have reasonable properties, so
we would expect it to be quite challenging to distinguish candidates from successful drugs
based on these simple properties. A more realistic test would be to distinguish drugs from
early ‘lead’ compounds from drug discovery projects.

® We have assessed the performance of the scoring profile on the same set used to train and
validate the corresponding rule. Therefore, the measure of performance may be artificially
high.

To address these concerns, we can apply these scoring approaches to an independent test set.
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This data set contains 118 drugs (different from those used to find the rule) and 1000 compounds
randomly selected from compounds in the ChEMBL database (https://www.ebi.ac.uk/chembl/) with
a pKi/plCso of greater than 6 (i.e. a Ki/ICso less than 1 uM) against a CNS target. The target and
measured pKi/plCso of each compound from ChEMBL is included in the data set.

® Change to the Scoring tab and run the scoring profile by clicking the button.
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® Select the Visualisation tab in StarDrop and, as before, click on the button to generate a
ROC plot. Choose Set as the property, Drug as the desired result and use the new score
Scoring profile — Set as the classifier. Check that the CNS MPO Test set is selected in the key
below the plot.
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https://www.ebi.ac.uk/chembl/

® Detach the ROC plot for the scoring profile by clicking the button in the bottom right of
the Visualisation tab.

® On the Visualisation tab, change the Classifier to CNS MPO score to create a ROC curve
showing the performance of CNS MPO score, as shown below:
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From this we can see that the performance of the scoring profile is better on this set, achieving an
AUC of 0.78. However, AUC for the CNS MPO score has improved only marginally to 0.63, indicating
that it cannot confidently distinguish between ‘lead’ compounds and drugs.

Conclusion

This example has shown how we can use the Profile Builder in MPO Explorer to generate scoring
profiles with which to select compounds with a higher chance of success against our objective; in
this case distinguishing CNS drugs from unsuccessful candidates.

In this example, we have only used the simple functionality of the Profile Builder. Other capabilities
enable the automatic selection of properties from a large number of possibilities and the derivation
of ‘soft’ criteria to take into account the sparseness of data, helping to avoid ‘hard’ cut offs that
draw artificially harsh distinctions between compounds close to a property criterion.

It is notable that the simple scoring profile, using only three properties (logP, pKa. of the most basic
site and MW) can outperform CNS MPO score, which uses six properties. This illustrates the fact that
there is significant correlation between the properties used in CNS MPO score, for example logP and
logD are strongly correlated (R?=0.6 in this set). The inclusion of correlated properties can result in
‘over counting’ of the same factor, inappropriately biasing the selection of compounds. The Profile
Builder will select only property criteria that contribute significantly to the selection of high quality
compounds, avoiding the selection of multiple, highly correlated properties.

This example has used the simple ‘drug like’ properties included in the CNS MPO score in order to
draw a direct comparison. However, the Profile Builder can be applied to any data, including
predicted or experimental biological or physicochemical properties that are more directly related to
the in vivo disposition or efficacy required in a successful compound.



Additional, practical examples can be found in Yusof and Segall, Drug Discov. Today 19(5) pp. 680-
687, a preprint of which can be downloaded from
http://www.optibrium.com/community/publications/multi-parameter-optimisation/215-preprint-
finding-the-rules-for-successful-drug-optimization.
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