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’ INTRODUCTION

In silico predictive models of key properties are routinely used
in the selection and design of potential drug molecules.1 These
results may be combined to prioritize compound ideas for
synthesis, simultaneously optimizing multiple parameters to
identify compounds with an appropriate balance of properties
for the therapeutic goal of a drug discovery project.2,3 Further-
more, the structure�activity relationships that these models
capture can guide the redesign of compounds to improve their
properties and overcome liabilities.4

Predictive methods can score and rank compounds to guide
the search for high-quality compounds among a large number of
possibilities; therefore, getting the maximum value depends on
having a rich set of potential compounds to search. However,
during optimization it is rare for a large library of relevant,
predefined structures to be available, and it is common to rely on
a medicinal chemist to define possible compounds of interest,
either by drawing individual structures or enumerating virtual
libraries based on a common structural motif. This is a time-
consuming process and limited by the experience of an individual
chemist.

Methods for automatically applying medicinal chemistry
‘transformation rules’ to generate new compound structures
have been previously described.5,6 These typically accept an
initial ‘parent’ structure as input and generate ‘child’ structures
by applying transformations based on collective medicinal chem-
istry experience. Examples of transformation rules range from
simple substitutions or bioisostere replacements to more dra-
matic modifications of the molecular framework, such as ring
opening or closing. A computer can store and apply many more

rules than a single chemist and can ‘learn’ from historical
examples of transformations between molecules.7 Applying a
set of transformations iteratively to produce multiple ‘genera-
tions’ of compound ideas can result in a large number of
molecules—too many to be examined visually by a chemist to
select the most interesting for further consideration.

In this paper, we describe the combination of an algorithm to
generate compound ideas, by applying transformations to an
initial molecule, with predictive models and a multiparameter
scoring algorithm to quickly focus attention on those ideas most
likely to satisfy the required property profile. The goal is a tool to
support experts and stimulate the process of innovation—
achieving a creative combination of a computer’s ability to cover
a wide breadth of possibilities with the experience and detailed
knowledge of a chemist. In particular, the discovery process
should be directed by an expert and provide a prioritized list of
possibilities for further consideration, not an automatically
designed final compound.

To be successful, such a method must satisfy a number of
requirements:
• It must generate a wide diversity of chemistry, as the

objective is to explore many ideas in the search for an
optimal solution.

• The compound structures generated must be relevant. In
particular, the number of ‘nonsensical’, e.g., chemically
unstable or infeasible, compounds must be kept to a
minimum. Also, the chemist must be able to control the
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ABSTRACT: In this article we describe a computational method that automatically generates
chemically relevant compound ideas from an initial molecule, closely integrated with in silico models,
and a probabilistic scoring algorithm to highlight the compound ideas most likely to satisfy a user-
defined profile of required properties. The new compound ideas are generated using medicinal
chemistry ‘transformation rules’ taken from examples in the literature. We demonstrate that the set of
206 transformations employed is generally applicable, produces a wide range of new compounds, and
is representative of the types of modifications previously made to move from lead-like to drug-like
compounds. Furthermore, we show that more than 94% of the compounds generated by transforma-
tion of typical drug-like molecules are acceptable to experienced medicinal chemists. Finally, we
illustrate an application of our approach to the lead that ultimately led to the discovery of duloxetine, a marketed serotonin reuptake
inhibitor.
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generation process, e.g., by specifying a region that must
not be modified or restricting the transformations that will
be applied.

• The transformations that are applied should include a
broadly representative set of those applied successfully in
the past to optimize successful drugs.

• The method used to prioritize the resulting compound
ideas should reliably identify high-quality compounds
within those given the highest rank in the generated set.

The methods used to create and apply a set of transformations
and prioritize the compounds generated thereby are described in
the Methods section. In the Results section, we describe the
validation of this method to ensure that the transformations
cover a broad range of ‘drug-like’ chemistry and that the resulting
structures are relevant and not unstable or infeasible. We will
describe the application of our method to efficiently identify
compounds similar to known drugs, starting from the lead
compounds from which the drugs were derived. Furthermore,
we illustrate the application of the compound idea generation
method combined with predictive models and a multiparameter
optimization algorithm to the lead of a known drug, duloxetine.
Although retrospective, this application will demonstrate the
ability to efficiently target high-quality compounds. Finally, we
will discuss possible applications of these methods and draw
some conclusions.

’METHODS

Transformations.Two hundred and six transformations were
generated by study of medicinal chemistry literature8�24 and
observation of the optimization steps between known drugs and
the lead molecules from which they were derived.
The transformations were divided into seven broad groups:

functional group addition, linker modification, remove atom, ring
addition, ring modification, ring removal, and terminal group
exchange. The distribution of transformations between the
groups is shown in Table 1, and examples of each are shown in
Table 2.
The transformations do not necessarily correspond to specific

chemical reactions or synthetic routes, rather they are intended
to describe changes to molecules that a medicinal chemist might
consider in the course of an optimization project. A single
transformation might require multiple synthetic steps or the
synthesis of new building blocks. However, the transformations
are typically not major rearrangements—they are relatively
feasible moves in chemical space.
Representation of Transformations. The compound trans-

formations were encoded as SMIRKS, a reaction transform lan-
guage designed by Daylight Chemical Information Systems which

uses SMILES and SMARTS notations to specify a generic reaction
or transformation.25 SMIRKS representations of example transfor-
mations are provided in Table 2.
Generation of Compound Structures. The Cactvs chemin-

formatics library26 was used within the StarDrop software
platform27 to apply the transformations to a parent compound
structure encoded as a SMILES string. The Cactvs implementa-
tion also allows a fragment of the parent to be specified as a
SMARTS pattern, such that this fragment will not be modified
during the generation process and any transformations that
would modify this region will be ignored.
The user can specify the parent structure and control the

generation process through a graphical user interface. The
typical workflow is illustrated in Figure 1: The user can specify
a region of the compound that must not be modified; the
transformations to be applied can be selected; the number of
generations of transformations to be applied can be specified;
and finally, because this process generates a number of
compounds that grows exponentially with the number of
generations, the user can control this growth by specifying a
criterion to select a subset of the compounds in each genera-
tion. The criterion may be defined in terms of any predicted
property or a score that represents the overall quality with
respect to a profile of properties (see “Scoring” below) and can
be specified as a threshold value for the property, e.g., only
accept compounds with log S > 1, or the number or proportion
of compounds to select from a list ranked by the property, e.g.,
only progress the 100 compounds with the highest predicted
potency in a generation or the highest scoring 10% of a generation.
PredictiveModels.Any in silicomodelmay be used to predict

the properties of the compounds generated. However, due to the
large number of compounds that may be generated, the models
should be capable of generating predictions quickly in order to
prevent the process from becoming intractable.
In the example presented in this paper, quantitative structure

�activity relationship (QSAR) models implemented in the
StarDrop software platform were used27 to predict the following
adsorption, distribution, metabolism, excretion (ADME) and
physicochemical properties: octanol/water partition coefficient
(log P), aqueous solubility (log S), human intestinal absorption
(HIA), blood�brain barrier penetration (log BB), inhibition of
the potassium ion channel encoded by the human ether-a-go-go
related gene (hERG pIC50), human plasma protein binding
(PPB), inhibition of cytochrome P450 isoforms CYP2D6 and
CYP2C9 (pKi) and active transport by P-glycoprotein (P-gp).
In order to identify high-quality compounds, it is also neces-

sary to predict activity against the pharmacological target for the
intended drug. In the example application described herein, a
QSAR model of the inhibitory constant against the serotonin
transporter (expressed as the logarithm of the Ki in nM) was
generated. The data set used to build this model was derived from
the publicly accessible ChEMBL database provided by the
European Bioinformatics Institute.28 A training set of 1454 com-
pounds was used to buildmultiple models using a range of statistical
fitting methods implemented in the StarDrop Auto-Modeler,29

and the model with the highest coefficient of determination (R2)
on an independent validation set of 311 compounds was selected.
The resulting model used a Gaussian processes (GP) method30

and 62 descriptors, including log P, McGowan’s volume,31

topological polar surface area,32 and two-dimensional structural
descriptors defined as SMARTS patterns. The final model has an
R2 of 0.88 and a root-mean-square error (RMSE) of 0.62 on the

Table 1. Distribution of Transformations between Groups

group number of transformations

functional group addition 20

linker modification 54

remove atom 5

ring addition 13

ring modification 26

ring removal 4

terminal group exchange 84

total 206
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training set, an R2 of 0.72 and a RMSE of 0.85 on the validation
set, and an R2 of 0.81 and a root-mean-square error of 0.76 on a
further, external test set of 311 compounds. The model also
estimates the confidence in each prediction, based on the GP
method which relates the uncertainty in the prediction for each
compound to its proximity to the compounds in the training set.
This confidence is explicitly taken into account in the scoring

method discussed below, so that highly uncertain predictions are
not given undue weight in the selection of compounds.
Scoring. The methods underlying the probabilistic scoring

algorithm employed herein are discussed in more detail in refs 3
and 4, but here we will give a brief overview. A probabilistic score
is one which indicates the probability of success of a molecule
against a ‘scoring profile’ that defines criteria for the properties

Table 2. Example of Transformation Rules

http://pubs.acs.org/action/showImage?doi=10.1021/ci2003208&iName=master.img-001.png&w=382&h=550
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that are required in an ideal compound. It is also important to
specify the relative importance of the criteria, as in practice, it is
often necessary to make a trade-off between properties if an ideal

molecule cannot be identified. Furthermore, more subtle trade-
offs can be defined than simple pass/fail criteria, as a scoring
profile could contain more complex functions for each property
representing a range of acceptability over the property value
range. An example of such a scoring profile is shown in Figure 2.
When combining property data on multiple properties, it is

also important to consider the uncertainty in each data point, as
this could lead to the overall uncertainty in the scores being high,
reducing our ability to confidently distinguish high- and low-
quality molecules. The result of this process is a score for each
molecule, representing the likelihood of a molecule meeting the
scoring criteria and an uncertainty in the overall score, derived
from the uncertainties in each of the individual property values.
These uncertainties can be used to establish whether the available
data allow one molecule to be confidently chosen over another.
Similarity. Compound similarity was measured using the

Tanimoto index calculated between topological path-based
fingerprints, with a maximum path length of 7 and a fingerprint
size of 2048 bits. This was performed using the RDKit toolkit.33

Drug Data Set. The set of 3211 drug molecules used in the
validation of the transformations (the ‘drug set’) was derived as
follows: version 2.5 of the DrugBank Small Molecule database34

was obtained on August 23, 2010. This initial set containing 4854
molecules was reduced by removing molecules containing atoms
other than C, H, N, O, P, S, Cl, or F, molecules with molecular
weight less than 200 Da, and 140 molecules which contained
poorly specified SMILES (127 aromaticity errors and 13 valence
errors), resulting in 3214 compounds. Finally, three additional
molecules (insulin, inulin and DB05413) were removed, as these
are very large, not representative of the compounds to which we
expect this method to be applied, and likely to skew the validation
statistics due to their size. Forty compounds were slightly edited
to remove small cofactors or counterions or to select only one
isomer where multiple isomers were specified.

’RESULTS

Transform Set Validation. Coverage. In order to ensure that
the set of transformations employed covers a wide range of ‘drug-
like’ chemistry, enabling the exploration of a diverse range of
potential modifications, each transformation should apply to a
wide range of molecules; a transformation that uniquely applies

Figure 2. Scoring profile used to prioritize compounds generated from
the duloxetine lead, showing the properties of interest, the desired value
ranges and the importance of each criterion. For example, the most
important property was inhibition of the serotonin transporter, for
which a predicted Ki of less than 10 nM (log Ki < 1) was required. This
was followed by an aqueous solubility of greater than 10 μM (log S > 1)
and positive prediction for HIA.

Figure 1. Illustration of a workflow to initiate the generation of new
compound structures. (a) Specify the input structure. A region of the
molecule can be chosen to be ‘frozen’ (shown in light blue), in which
case, no modifications will be made to this region. (b) The transforma-
tions to apply can be selected either individually or as groups. The
groups can be managed to create groups tailored to specific objectives
or to add new transformations. (c) The number of generations can be
specified, and a criterion for selection can be defined to limit the
growth of the number of compounds generated. The selection can be
defined as a minimum threshold for a property or score or a maximum
number or percentage of each generation that will be used as the basis
for subsequent generations.

http://pubs.acs.org/action/showImage?doi=10.1021/ci2003208&iName=master.img-002.jpg&w=240&h=122
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to a single molecule is not of interest. Furthermore, when the full
set of transformations is applied to a ‘typical’ drug-like parent
molecule, a large number of child molecules should be generated.
To test these requirements, the 206 transformations were

applied to a set of 3211 drugmolecules; the ‘drug set’ described in
the Methods Section. This resulted in 584 124 child compounds;
thus, on average, 182 child compounds were generated from each
parent. Furthermore, on average, each transformation applied at
least once to 31% of the molecules in the drug set.
These statistics indicate that the set of transformations have

broad applicability to drug-like compounds and will generate a
wide range of child compounds.
Quality. As discussed above, the transformation rules should

be sufficiently general. However, there is a trade-off in that a
more general transform is more likely to apply in an occasionally
inappropriate chemical context. This can generate undesirable or
infeasible compound structures. The desirability of compound
structures is, to some extent, subjective. Therefore, the quality of
the compound structures generated was assessed by asking two
independent medicinal chemists to examine a set of 1500 com-
pounds generated using the 206 transformations.
The quality assessment set was generated as follows: 400

compounds were randomly selected from the drug set described
in the Methods Section. All of the 206 transformations were
applied to the 400 selected molecules to generate a set of child
compounds. From the full set of child compounds, 1500 were
selected at random for assessment by the medicinal chemists.
The medicinal chemists were asked to assess each child

compound to determine whether it was undesirable. They were
not asked to determine if they could identify a synthetic route to
the product; an ideal compound that was synthetically challen-
ging may be worth the effort of devising a difficult synthetic route
or may spark further ideas that are more accessible.

From the same set of 1500 child compounds, one chemist
flagged 7% of the structures as undesirable, while the other
flagged 4.1%. This demonstrates that desirability is, to some
extent, subjective. However, an average acceptance rate of 94%
was considered to bemore than sufficient. It would be possible to
filter out some of the undesirable structures before they are
output. However, it was decided to retain this small proportion of
poor compound structures, though they may be a minor distrac-
tion, as they may stimulate ideas for similar compounds that are
chemically feasible.
Hit- to Drug-Like Transformation Series.The transformations

in the set should be representative of those used in practice to
optimize leads into drug molecules. To assess this, a data set
containing 60 marketed drugs and the initial leads from which
they were derived, published by Perola,35 was used (we will refer
to these lead/drug pairs as the ‘Perola set’).
For each lead/drug pair in the Perola set, the lead was used as

the initial parent, and the 206 transformations were applied
iteratively to explore the ‘universe’ of compounds that are
accessible from the lead. The goal of this was to identify the
closest compound structure in this universe to the corresponding
drug. This is challenging, as many of the derivations of drugs in
the Perola set from their corresponding leads include the
exchange or incorporation of large or relatively uncommon
fragments. A result of the coverage requirements described above
is that most of the transforms involve smaller fragments. There-
fore, many iterative applications of the transformations may be
required, creating many generations of child compounds, to
move from a lead to a compound similar to the corresponding
drug, and even then, it may not be possible to find an exact match
to the drug.
As the number of compounds generated increases exponentially

with the number of generations, it is impractical to exhaustively

Figure 3. This graph shows the 2208 compounds generated by three generations of transformations starting with the lead compound for the project that
yielded the drug duloxetine. The compounds generated are ordered along the x-axis accoring to their score from highest to lowest, and the score for each
compound, as calculated using the probabilistic scoring algorithm, is plotted on the y-axis. Error bars show the uncertainty of the overall score for each
compound due to the uncertainties in the underlying predictions. The compounds are colored by generation: Red is the parent, yellow generation 1,
light-blue generation 2, and dark-blue generation 3. The drug duloxetine was present in generation 3 and is shown by the green diamond.

http://pubs.acs.org/action/showImage?doi=10.1021/ci2003208&iName=master.img-004.jpg&w=450&h=242
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enumerate all offspring compound structures. For example, if 182
compounds are generated on average from a single parent, the
third generation will contain more than 6 million compounds.
Therefore, a ‘beam’ search was implemented, whereby the 100
compounds with the greatest similarity to the target drug were
retained after each iteration, and a total of 5 iterations were applied.
The closest match, as measured by Tanimoto similarity applied to
topological finerprints (see Methods Section), to the correspond-
ing drug was identified from the resulting child compounds. The
disadvantage of this approach is that it does not guarantee to find
the closest match that could be achieved, as it may be necessary to
initially move away from the drug in order to ultimately generate
the most similar compound. Furthermore, it may be possible to
find a closer child compound if more than five iterations were
applied.
On average, the similarity of the drug with closest match in the

child compounds generated from the corresponding lead was
0.86 compared with an average similarity between the drugs and
leads of 0.64. Out of the 60 Perola lead/drug pairs, 9 exact
matches were achieved within the compounds generated from
the initial lead. The structures of the initial leads, corresponding
drugs, and closest identified child compounds are provided in the
Supporting Information. It should be noted that this is not an
external validation of the transformation set, as a few known
drugs (including some from the Perola set) influenced some of
the commonly applied transformations. However, this test
provides confidence that the transformations chosen in the set

of 206 are not only generally applicable but can move from lead-
to drug-like compounds across a wide range of small molecule
drug classes.
Example Application. To illustrate the application of the

transformation set to guide the search for optimized compounds
based on an initial lead, we used the lead molecule that ultimately
gave rise to the drug duloxetine as the parent molecule.
QSAR models of ADME properties and the inhibitory con-

stant Ki for the serotonin transporter, described in detail in the
Methods Section, were used to predict the properties of the
compound ideas generated. These ideas were prioritized against
the multiparameter profile of property criteria shown in Figure 2,
which combines potency against the primary target with suitable
ADME properties for an orally dosed compound against a CNS
target. To achieve this, a score between 0 and 1 was calculated for
each compound, using a probabilistic scoring method described
in the Methods Section.
The application of one generation of transformations pro-

duced 172 child compounds, which suggested that exhaustive
enumeration of more than two generations would be intractable.
Therefore, three generations were applied, but only the top-
scoring 10% of the compounds in each generation was used as
the basis for subsequent generations.
The resulting data set contained 2208 compounds, and the

scores for these compounds are plotted in Figure 3. From this, a
number of observations may be made: First, as the results from
multiple uncertain predictions are combined to calculate the

Figure 4. On the left, the initial lead that ultimately gave rise to duloxetine, the top three compounds generated from this lead and duloxetine, which was
also generated by the algorithm are shown. The score for each compound is shown to the right, along with a histogram indicating the contribution of each
property to the overall score (the color of each bar corresponds to the property key shown in Figure 2). For comparison with the second-ranked
compound, the structure and calculated score for litoxetine, a clinical candidate serotonin reuptake inhibitor, is shown on the right. Although this
structure was not generated automatically in this example, it bears a strong similariy (Tanimoto similarity >0.9) with the second-ranked compound,
which has a higher predicted affinity and hence a higher score.

http://pubs.acs.org/action/showImage?doi=10.1021/ci2003208&iName=master.img-005.jpg&w=400&h=289
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scores, the uncertainties in the scores are high, as shown by the
error bars in Figure 3. Therefore, it is difficult to discriminate
between compounds with confidence, particularly in the later
generations. However, despite this, the information provided by
the score is sufficient to guide a consistent improvement, and the
compounds in each generation typically show an increase in
score over the previous generation; the score for the initial lead is
0.09, and the averages for the compounds in subsequent genera-
tions are 0.32, 0.44, and 0.53, respectively (note that only the top
10% of the compounds in each generation is included). Further-
more, the score of the top compounds (0.7 ( 0.3) suggests
∼95% confidence that they are better than the initial lead (0.1(
0.2), assessed against the criteria defined in the scoring profile.
Finally, it is notable that duloxetine itself is present in the final
generation, with a score (0.5( 0.3) that is higher than the initial
lead with ∼90% confidence and not significantly below that of
the highest scoring compounds.
The structures and scores of the initial lead and duloxetine are

shown in Figure 4 along with the three highest ranking molecules
generated. Although none of the top-three compounds could be
identified in a search of PubChem,36 the second-ranked com-
pound bears a strong similarity (Tanimoto similarity >0.9) to
litoxetine, shown in Figure 4, which was progressed to clinical
trials and is active against the serotonin transporter with an IC50

of 6 nM.37

It is notable that the third-ranked compound in Figure 4 is
likely to be an alkylating agent. This illustrates that, while we have
tried to minimize the number of ‘nonsensical’ compounds
generated by the transformations, some compounds may be
generated with undesirable functionalities, and we will discuss
this further in the conclusions below.
A ‘chemical space’ visualization, illustrating the diversity of the

compounds in the generated data set, is shown in Figure 5. This
plot was generated by generating the full similarity space for the

set of 2208 compounds, using two-dimensional path-based
fingerprints and a Tanimoto similarity index and plotting the
first two principal components. From this it is notable that a wide
range of different chemical motifs have been explored and that
there are multiple ‘hot spots’ containing high-scoring com-
pounds; the best scoring compounds are not concentrated in
one region, indicating that the algorithm has identified a number
of different chemical strategies worthy of further consideration.
The top three ranked molecules are structurally diverse, within
the range of diversity explored around the initial lead, and are
distinct from both the initial lead and duloxetine itself.
In this example, the increase in score is driven primarily by the

improvements in predicted target affinity between generations
because the predicted ADME properties of the lead compound
were good to begin with. However, the use of probabilistic
scoring to select compounds with a good balance of properties
was valuable as it eliminated compounds in early generations that
were predicted to have high target affinity but were unlikely to
have a good balance of ADME properties for the overall
objective. Figure 6 shows the distribution of the scores for
compounds in the first two generation with predicted Ki less
than 10 nM, indicating that a significant number of compounds
that were predicted to be active were rejected due to the
predictions of poor values of other properties including solubility
(184 compounds from generation 2 were used as the progenitors
of generation 3).

’DISCUSSION AND CONCLUSIONS

In this paper we have described an algorithm for automatically
generating new compound ideas from an initial molecule using a
set of medicinal chemistry transformations derived from the
literature. We have shown that these transformations are gen-
erally applicable and generate structures that are relevant and
acceptable to medicinal chemists. Furthermore, we have demon-
strated the use of this chemical transformation algorithm coupled

Figure 5. Chemical space of compounds generated from the initial lead
that gave rise to duloxetine. The points corresponding to compounds are
colored by score, from the lowest (0.29) in red to the highest (0.69) in
yellow. The initial lead is shown as a dark-blue diamond, duloxetine as a
green diamond. The top three scoring compounds are shown as purple
diamonds. In this plot, each point represents a compound, and the
distance between two points indicates their structural similarity; close
points are structurally similar, while distant points are structurally
diverse. The method by which this plot was generated is described in
the text.

Figure 6. Score distribution for the compounds in generations 1 and 2
from the duloxetine lead compound with a predicted Ki of less than
10 nM. From this we can see that there are a significant number of
compounds with poor scores, despite having high target affinity,
indicating that they are likely to have poor values for other relevant
properties.

http://pubs.acs.org/action/showImage?doi=10.1021/ci2003208&iName=master.img-006.jpg&w=199&h=175
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with predictive models and a multiparameter optimization method,
integrated in an intuitive visual environment, to stimulate the
exploration of a wide range of strategies to identify compounds
with a good balance of properties and hence a high chance of
downstream success.

While we use a systematic search method as the basis for
making chemical modifications, other approaches based on
evolutionary algorithms (EA) have also been applied.38,39 Moti-
vated by the theory of evolution, EA-based methods ‘mutate’ the
structure of a compound by making small modifications to a
compound structure, for example, adding or removing a single
atom, changing the bond order, or changing a carbon atom into a
heteroatom. The equivalent of genetic ‘crossover’ can also be
implemented by combining substructures from two different
compounds. This evolutionary process is guided by a ‘fitness
function’ that may be defined in terms of simple descriptors,
predicted properties, or even by user selection.40 The application
of a transformation rule in our approach is analogous to a
mutation; however, the structural changes corresponding to
medicinal chemistry transformations are typically larger than
an EA mutation. Similarly, the role of a fitness function to guide
the optimization in an EA is fulfilled by the probabilistic score in
our approach. One advantage of a medicinal chemistry transfor-
mation-based approach is that the structures generated tend to
be more relevant, due to the fact that the transformations are
based on historical precedents; however, the diversity of chem-
istry that can be explored may be more limited than an EA
approach, as it is restricted by the library of transformations
applied.

The most significant limitation of the method we have
described is that, while we have shown that the large majority
of the chemical structures generated are relevant and not
infeasible, there is no guarantee that they can be easily synthe-
sized from available reagents. Computational methods have
been proposed for estimating synthetic tractability41 and in-
cluding such an estimate as an additional parameter in the
multiparameter optimization profile would be one approach to
address this.

In the application to the duloxetine lead, we noted an example
of a compound generated with an undesirable, alkylating func-
tionality. This is due to the fact that a transformation set should
have a balance between generality and the relevance of the
compounds generated; attempting to restrict the transformations
to eliminate all undesirable functionalities would severely limit
the diversity of chemistry that could be explored. Furthermore, a
compound with an undesirable functionality may provide the
seed for a valuable idea through a simple modification. However,
a set of substructural alerts (e.g., refs 42 and 43) could be applied
to flag compounds that contain undesirable functionalities, as
either a posthoc filter or a criterion in the scoring profile, to
deprioritize the selection of compounds flagged during the
generation process.

Herein, we employed a two-dimensional QSAR model for
prediction of potency against the therapeutic target. There are
many other approaches for prediction of potency that take into
account three-dimensional information, such as pharmacophore,
docking, or shape-based methods. It should be noted that any
method may be used to predict the properties used to calculate
the probabilistic score used to guide the selection of compounds
between generations, and three-dimensional methods would
provide a good approach to eliminate compounds that do not
fit the active site of the target.

Another potential extension would be to explicitly consider
diversity in the selection of compounds between generations.
In the example application described herein, only the top
scoring compounds were selected as the basis for subsequent
generations. There is a risk that such a search strategy could
quickly focus on a set of very similar compounds, although as
we demonstrated, this did not occur in this case. To mitigate
this risk, a selection could be made based on a balance of score
and structural diversity44,3 which would select some lower-
scoring compounds where these would add significantly to the
diversity of the compounds selected and would prevent the
exploration from becoming trapped in a local maximum. The
degree of bias between score and diversity could be a user-
controlled parameter.

There are a wide range of potential applications of this
technology. These include: aiding the rigorous exploration of
chemistry around early hits, to identify those hits most likely to
yield high-quality lead series; helping to find strategies to over-
come problems with compound properties in lead optimization;
and identifying patent busting opportunities by expanding the
chemistry around existing development candidates or drugs to
search for compounds with improved properties.

Finally, while we have focused on the creation and the validation
of an initial set of transformations, it is possible to extend this set
with new transformations based on the experience of medicinal
chemists or designed around specific chemistry available within an
organization. Furthermore, it may be beneficial to organize
transformations into groups, perhaps tailored to specific objec-
tives, such as improving metabolic stability or reducing plasma
protein binding. Thus, this approach could be used as a tool to
capture and share knowledge between medicinal chemists or even
as an educational resource for less experienced scientists.
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