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Abstract All of the experimental compound data with

which we work have significant uncertainties, due to

imperfect correlations between experimental systems and

the ultimate in vivo properties of compounds and the

inherent variability in experimental conditions. When using

these data to make decisions, it is essential that these

uncertainties are taken into account to avoid making

inappropriate decisions in the selection of compounds,

which can lead to wasted effort and missed opportunities.

In this paper we will consider approaches to rigorously

account for uncertainties when selecting between com-

pounds or assessing compounds against a property crite-

rion; first for an individual measurement of a single

property and then for multiple measurements of a property

for the same compound. We will then explore how

uncertainties in multiple properties can be combined when

assessing compounds against a profile of criteria, a process

known as multi-parameter optimisation. This guides rig-

orous decision-making using complex, uncertain data to

focus on compounds with the best chance of success, while

avoiding missed opportunities by inappropriately rejecting

compounds.

Keywords Uncertainty � Probability � Drug discovery �
Compound optimisation � Multi-parameter optimisation �
Desirability function

Introduction

When working with compound data, we should be aware

of the uncertainties in the values obtained from experi-

mental measurements and consider the impact that these

have on the decisions that we make based on this

information. It is well established that people find it

challenging to make good decisions based on uncertain

information; experimental psychologists have described

many so-called cognitive biases that lead to missed

opportunities and inefficient use of resources [1, 2]. In

this paper, we will consider ways in which uncertainties

in data can affect decisions on the selection of com-

pounds and discuss approaches to take these uncertain-

ties into account in order to mitigate the associated

risks.

There are two main sources of uncertainty in experi-

mental measurements of compound properties:

• We know that variability is observed in the results

obtained from an assay when performed multiple times,

due to minor changes in the experimental conditions,

instrument noise or simply the variability inherent in

complex biological systems. This can be considered as

noise or statistical error around the ‘true’ property

value.

• There are also uncertainties in the relevance of results

from experimental systems to the ultimate goal of a

project; for example, in drug discovery, we must

remember that all experimental systems we use are

models of the human patient and these do not correlate

perfectly with the in vivo behaviour in human.

In this paper, we will consider how we can rigorously take

these sources of uncertainty into consideration when using

data to make decisions about the selection of compounds,
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for example which compounds or series should be selected

for further investigation.

We should also remember that identifying a successful

compound requires the simultaneous optimisation of multi-

ple compound properties; for a drug discovery objective

these include potency against the therapeutic target(s),

selectivity over off-targets, appropriate physicochemical,

absorption, distribution, metabolism and excretion (ADME)

properties and safety. Therefore, we will also explore

approaches to deal with the combination of uncertainties in

multiple properties in this multi-parameter optimisation

(MPO) challenge [3].

The focus of this paper is on the use of experimental

data, but similar approaches can be applied to calculated

or predicted properties in the virtual design of compounds

[3, 4].

Statistical uncertainty

If an experiment is repeated multiple times under the same

conditions (as far as is possible), the results will vary to

some extent. Differences between experimental samples,

operators, instruments and the time or location at which the

experiment is conducted are among the sources of variation

that can give rise to experimental variability. If we consider

these variations to be sources of random errors, neglecting

for now the possibility of systematic errors that consis-

tently bias a result, we can consider the impact of this

uncertainty on our confidence in choosing between two

compounds.

Single point data

First, we consider the simple case where we have a single

measurement, xA, of a property of compound A, for which

the ‘true’ (but unknown) value of the property is XA. If we

furthermore assume that the experimental error in this

measurement is normally distributed with standard devia-

tion r (a variance of r2), then this would be denoted:

XA �N xA; r
2

� �
:

We could, for example, estimate the standard deviation

from a reference compound that has been run repeatedly

through the assay (an estimate of the ‘population’ standard

deviation).

This scenario often occurs when we have early, single-

point screening data for a compound and we could ask a

question regarding whether the compound meets a selec-

tion criterion for the property. For example, if the property

of interest is the activity against a target, expressed as a pKi

(the negative log of the inhibition constant Ki in molar

concentration), we might ask if a compound with a mea-

sured pKi of 7.1 (Ki = 79 nM) meets a selection criteria of

pKi[ 7 (Ki\ 100 nM). If we assumed the data was per-

fect then clearly the answer is ‘‘yes’’. However, a typical

uncertainty in such a value might be 0.5 log units (one

standard deviation), which is roughly equivalent to a factor

of 3 in the Ki value. Therefore, we should ask, ‘‘What is the

chance that this compound meets the selection criterion?’’,

as illustrated by the shaded region in Fig. 1. Quantitatively,

we can calculate the probability that the compound meets

our criterion as:

P XA [ 7ð Þ ¼ P N xA; r
2

� �
[ 7

� �
¼ P Z[

7� xAð Þ
r

� �

¼ P Z[ � 0:2ð Þ ¼ 0:58;

where Z takes the standard normal distribution, N(0, 1).

Therefore, we can only say that there is a 58 % chance that

this compound will meet our requirements, little better than

a coin toss.

If we had another compound, B, for which a single

measurement, xB, had been made for the same property,

then:

XB �N xB; r
2

� �
:

We can then ask questions about the difference between the

property values for compounds A and B and there are

simple rules for combining the uncertainties. For example,

the difference between the properties is:

XB � XAð Þ�N xB � xA; 2r
2

� �
;

which means that the standard deviation in the difference

between the property values of compounds A and B isffiffiffi
2

p
r:
For example, we might want to choose the more potent

of the two compounds and, if the measured value of the pKi

of compound B was 7.8 (Ki = 16 nM), this might lead us

to choose compound B over compound A. However, if this

measurement had the same standard deviation, then we

can’t be absolutely confident that we can distinguish

between these compounds, as illustrated in Fig. 2. The

probability that compound B is more potent than com-

pound A is actually:

P XB � XA [ 0ð Þ ¼ P N xB � xA; 2r
2

� �
[ 0

� �

¼ P Z[
xA � xBffiffiffi

2
p

r

� �
¼ PðZ[ � 0:99Þ

¼ 0:84:

So, again, we can only say that there is an 84 % chance that

compound B is more potent than compound A. All other

things being equal, we would still probably place our bets

on compounds B, but would we want to take the risk of

missing an opportunity in compound A?
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Multiple measurements

Given the inherent variability in biological systems, it is

common to compare the average (or mean) property values

of a compound. Therefore, as a project progresses, exper-

iments will be often performed in replicate, to generate

several data points for the same compound. If we had a

very large number of replicates we could obtain a precise

estimate of the ‘true’ mean, �X: However, in practice, only a

handful of measurements may be made, which limits the

accuracy of our estimate of this mean, �x; made from the

sample. However, the accuracy of the estimate, the stan-

dard error in the mean, SE�x; made from the limited sample,

can be estimated from the standard deviation of the sample,

s, as follows:

�x ¼ 1

N

XN

i¼1

xi;

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1
ðxi � �xÞ2

r

;

SE�x ¼
s
ffiffiffiffi
N

p ;

where, N is the number of measurements and xi is the ith

measurement of the property.

Fig. 1 The probability

distribution of the pKi of a

compound, corresponding to a

measured value of 7.1 with a

standard deviation of 0.5,

assuming that the error is

normally distributed. The

vertical dashed line corresponds

to a threshold value of seven

and the shaded region

corresponds to the probability

that the ‘true’ pKi value is

greater than 7

Fig. 2 Probability distributions

of the pKi values of two

compounds: Compound A (solid

line) has a measured value of

7.1 and compound B (dashed

line) has a measured value of

7.8. Both measurements have a

standard deviations of 0.5 and

we have assumed that the errors

are normally distributed. The

shaded region highlights the

region in which there is a

significant probability that the

‘true’ pKi of compound A is

higher than that of compound B
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In these scenarios, the mean, �x; takes the Student’s t

distribution [4] with N-1 degrees of freedom and this

enables us to rigorously estimate probabilities in a similar

manner to the single-measurement case above. For exam-

ple, we may have two compounds C and D, for which the

measurements in Table 1 have been made.

We could then ask the question, what is the chance that

the mean property value for compound C, �XC; is greater

than three? Which may be calculated as follows:

P �XC [ 3ð Þ ¼ P t4 [
�xC � 3

SE�xC

� �
¼ P t4 [ � 0:18ð Þ ¼ 0:43;

where t4 takes the Student’s t distribution with four degrees

of freedom. In this case, we might have been tempted to

reject compound C, based on a measured average of 2.92

and a selection criterion of [3, when there is actually a

43 % chance that the true average value meets this

criterion.

When comparing two compounds, based on their aver-

age measured values, the formulae become even more

complex [4], but, for example, we can ask if compound D

has a higher mean property than compound C, as follows:

P �XD � �XC [ 0ð Þ ¼ P t[
�xC � �xDffiffiffiffiffiffiffiffiffiffi

s2
C
þs2

D

N

q

0

B@

1

CA ¼ P t8 [ � 2:22ð Þ

¼ 0:97:

Therefore, in this case, we can be 97 % confident that

compound D has a higher average property value than

compound C.

Combining measurements

When combining data for different properties, to calculate

a derived value such as target selectivity, the uncertainties

in the individual measurements also combine. For example,

ligand efficiency indices are currently popular metrics for

comparing the ‘quality’ of compounds [5] and the ligand

lipophilicity efficiency is defined as:

LLE ¼ pKi � log P;

where log P is the logarithm of the octanol: water partition

coefficient. However, as we’ve seen there will be experi-

mental error in the pKi value and, similarly, there will be

uncertainty in the log P value, particularly if a predicted

value is used. Therefore, assuming both errors are normally

distributed, the standard deviation in the LLE will be given

by:

rLLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2pKi

þ r2log P

q
;

where rpKi
is the standard deviation in the pKi value and

rlog P is the standard deviation in the log P.

It is important to keep this in mind because uncer-

tainties can accumulate quickly and make it difficult to

distinguish between compounds based on these derived

properties.

Relevance

Even if we knew the results of an experimental measure-

ment precisely, this would not necessarily mean that we

could make a confident decision. This is because the

properties that are commonly measured early in a project

are often models of the ultimate objective; in particular, in

drug discovery, all experimental systems, whether in vitro

or in vivo, are models of the human patient. These models

do not correlate exactly with the in vivo outcome in human

and therefore it may not be appropriate to apply hard cri-

teria when selecting compounds, because this may lead to

rejecting good compounds inappropriately.

Take, for example, the data in Fig. 3a comparing per-

meability across the human epithelial colorectal adeno-

carcinoma (Caco-2) cell line [6], a commonly used model

of permeation across the human intestine, with clinically

measured human intestinal absorption (HIA), as published

by Irvine et al. [7]. Here we can see that a high measured

Caco-2 permeability would give us confidence that the

compound would be well absorbed, but a low permeation

does not strongly indicate poor absorption, although we

could say that the chance of achieving good oral absorption

in humans would be lower. Therefore, it would not be

appropriate to reject a compound outright based on a low

Caco-2 permeability, particularly if other properties of the

compound were good.

One approach to avoiding hard cut-offs is to use a ‘de-

sirability function’ [8] that relates the value of a mea-

surement to its desirability, on a scale between 1 (ideal) to

Table 1 Example samples of data for two compound and calculated sample statistics

Compound Measurements Sample

mean (�x)
Sample standard

deviation (s)

Standard error in

mean (SE�x)

C 1.5 3.2 2.4 3.5 4 2.92 0.98 0.44

D 3.5 4.3 5.5 4.9 3.2 4.28 0.95 0.43
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0 (reject absolutely). These can reflect the impact of a

property value on the chance of success of a compound to

give a measurement appropriate weight in a decision. This

is important because we know that some property criteria

are critical, while it may be appropriate to compromise or

trade-off other properties to achieve better results for crit-

ical factors.

An example of this is shown in Fig. 3b for the objective

of achieving a HIA greater than 50 %. The histogram bars

indicate the chance of a compound achieving this objective

for measured Caco-2 permeability in one log-unit ranges,

according to the data in Fig. 3a. Here we can see that, even

for compounds with the lowest measured Caco-2 perme-

ability, one-third have a clinical HIA greater than 50 %.

The corresponding desirability function is shown, indicat-

ing that the ideal outcome would be a Caco-2 permeability

above 100 nm/s (log(Papp)[ 2) while the worst outcome

would be a Caco-2 permeability below 1 nm/s

(log(Papp)\ 0), where the chance of success is still

approximately one-third. Between these values, the desir-

ability increases approximately linearly.

Combining multiple properties, relevance
and uncertainty

So far, we have explored approaches to considering

uncertainties in data for a single property. However, when

optimising a compound against a profile of property cri-

teria, we should also consider how the uncertainties in the

data combine to affect our ability to distinguish between

compounds.

If we consider a naı̈ve approach of applying a series of

hard cut-offs, or filters, we can see the issues that can arise.

For example, if we apply filters for five different properties

that are each 80 % accurate in distinguishing ‘good’ from

‘bad’ outcomes, the probability of an ideal compound

passing all five filters is only 33 %, i.e. we are twice as

likely to reject a perfect compound than to take it forward.

Given that perfect compounds are usually rare, the

opportunity cost of these errors can be high.

Using desirability functions softens the impact of hard

cut-offs and the desirabilities of multiple properties can be

combined to calculate a ‘desirability index’, representing

the overall quality of a compound against a required

property profile. The most common approaches for com-

bining the individual property desirabilities use additive or

multiplicative approaches:

Additive:Dðx1; x2; . . .; xNÞ ¼
XN

i¼1
diðxiÞ

Multiplicative:Dðx1; x2; . . .; xMÞ ¼
YN

i¼1
diðxiÞ

where xi are the values of N compound properties and di
are the desirability functions for the properties. These are

sometimes normalised by the number of properties by

taking the arithmetic or geometric mean, for the additive or

multiplicative approaches respectively, and the individual

desirabilities can be weighted to reflect different degrees of

importance of each property.

If the desirability functions for the individual properties

are defined as described above, the additive approach is

related to the chance of passing a subset of the property

criteria, while the multiplicative approach relates to the

chance of passing all of the property criteria. The relative

strengths and weaknesses of these approaches and some

other alternatives are discussed in more detail in [9].

The probabilistic scoring method [10] builds on desir-

ability functions to explicitly account for the uncertainties

in the underlying data. Using this approach, a profile of

property criteria can be defined, as illustrated in Fig. 4, to

reflect the requirements of a specific project. Underlying

each of these criteria is a desirability function that reflects

Fig. 3 a Scatter plot of experimentally measured Caco-2 Papp against

clinical human intestinal absorption for 52 compounds published by

Irvine et al. [7]. The histogram in (b) shows the proportion of

compounds achieving a human intestinal absorption greater than

50 % for Caco-2 Papp values binned in one log-unit ranges. The solid

line corresponds to a desirability function approximately representing

the likelihood of success of compounds for this objective against

Caco-2 Papp
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the importance and acceptable trade-offs for each property.

By assessing the data and associated uncertainties, a score

is calculated that represents the chance of success against

the desired profile, i.e. the probability of achieving the

ideal property criteria. Furthermore, the uncertainty in the

overall score can be calculated, which indicates when

compounds can be confidently distinguished or, con-

versely, when the data do not support this decision, as

illustrated in Fig. 5. This helps to avoid missed opportu-

nities caused by giving too much weight to uncertain data.

Furthermore, the impact of missing data, where a property

of a compound has not yet been measured, can be

accounted for rigorously. The impact of the missing data

on the priority given to the compound can be assessed to

identify when it would be valuable to ‘fill in’ the missing

data point.

As an example, consider the simple, hypothetical data

set shown in Fig. 6, showing values for potency, selectivity

and solubility for ten compounds labelled A through J. In

Fig. 6a the results are shown for filtering the compounds

based on the following cut-offs:

• Potency (pKi)[ 7 (better than 100 nM)

• Log selectivity[ 1 (better than a factor of 10)

• Log solubility (lM)[ 2 (better than 100 lM)

Note that all of the compounds fail on one or more

criteria, except for one which is on the threshold for all

three properties. Also note that the selectivity value for

compound J is missing, so it is not known if this compound

would pass all of the criteria. Therefore, if we were to

choose any compound on this basis, it would be compound

D, but none of the compounds clearly meet all of the

criteria.

If we apply the desirability functions shown in Fig. 7 to

the property values of these compounds, using a multi-

plicative scheme to calculate the overall scores, the results

are shown in Fig. 6b. Here we see that compound D would

still be ranked highest, but the remaining compounds can

also be prioritised according to the importance of each

property and the desirability of property values close to the

ideal cut-offs. It is still not clear how to prioritise com-

pound J due to the missing data for selectivity.

However, there are uncertainties in the property values,

as follows:

Fig. 4 An example of a profile of property criteria suitable for

identifying a compound that is a potent inhibitor of the serotonin

5-hydroxytryptamine (5-HT1A) receptor and has suitable physico-

chemical and ADME properties for oral dosing and a target in the

central nervous system. Underlying each of the criteria are desirability

functions, as illustrated for the pKi against 5-HT1A. The histogram

behind the desirability function shows the distribution of pKi values

for the compounds an example data set

Fig. 5 The results of probabilistic scoring for the ten compounds and

associated data shown in Fig. 6. The compounds are ordered from left

to right along the x-axis in order of their score and the overall score

for each compound is plotted on the y-axis. The uncertainty in each

score (one standard deviation), due to the uncertainty in the

underlying data, is shown by error bars around the corresponding

point. From this it can be seen that compounds B, J, D, A and E

cannot be confidently distinguished based on the available data, while

H, F, G and I can be confidently rejected. The probability that

compound C is equivalent to the highest scoring compound is small,

although the difference is not statistically significant
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• Potency (pKi): ±0.3 log units (a factor of 2 in the Ki)

• Log selectivity: ±0.4 log units (a factor of 2.6, derived

from the ratio of two potencies each with a factor of 2

uncertainty)

• Log solubility: ±0.6 log units

Therefore, applying probabilistic scoring to these com-

pounds, using the same desirability functions shown in

Fig. 7 and taking into account these uncertainties, gives

rise to the scores shown in Fig. 6c. Now we can see that

compound B has the best overall chance of success because

it lies confidently above the ideal criteria for potency and

solubility and close to the cut-off for selectivity. Also note

that compound J can now be ranked alongside the other

compounds because the missing data can be rigorously

considered as a very uncertain value and the impact of this

uncertainty assessed. Due to the good values compound J

Fig. 6 A simple, hypothetical example of prioritisation of ten

compounds (labelled A through J) with data for potency (pKi), log

selectivity and log solubility (lM) using three methods. a The results

of applying filters corresponding to pKi[ 7, log selectivity[ 1 and

log solubility[ 2. A green cell indicates that the property passes the

criterion and red that it fails. Compound D is coloured yellow because

it lies exactly on the thresholds for all three properties. b The results

of calculating a score corresponding to a multiplicative desirability

index using the desirability functions for the three properties shown in

Fig. 7. The compounds are sorted by score and the cells are coloured

by the desirability of each property value from red (0) to green (1).

c The results of applying probabilistic scoring using desirability

functions shown in Fig. 7 and the following uncertainties (1 standard

deviation): pKi ± 0.3; log selectivity ± 0.4; log solubility ± 0.6 log

units. The compounds are ordered by score and the cells are coloured

by the likelihood of achieving the ideal outcome for the correspond-

ing property from red (0) to green (1)

Fig. 7 Desirability functions for potency (pKi), log selectivity and

log solubility (lM), as applied to the example compounds in Fig. 6.

The desirability function for potency corresponds to an ideal pKi

greater than 7 and a linearly increasing likelihood of success from a

minimum of 0.05 for pKi values less than 6.7. The desirability

function for log selectivity corresponds to an ideal value greater than

1 and a linearly increasing likelihood of success from a minimum of

0.3 for values less than 1.7. The desirability function for log solubility

corresponds to an ideal value greater than 2 and a linearly increasing

likelihood of success from a minimum of 0.3 for values less than 0.9.

The histograms in each case shows the distribution of the corre-

sponding property for the data set in Fig. 6
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achieved for potency and solubility it ranks higher than

compounds which fail these property criteria with confi-

dence and those that confidently fail the criterion for

selectivity; it is better to have an uncertain result than a

value that is known to be poor.

The overall impact of the uncertainties is shown in

Fig. 5, where the error bars indicate the uncertainties in the

score. Here we can see that, in fact, the top five or six

compounds cannot be confidently distinguished from the

highest ranked compound based on the available data. Only

compounds F, G, H and I can be rejected with confidence,

while the probability that C is equivalent to the highest

scoring compound is small, although the difference is not

statistically significant. In this scenario, an additional cri-

terion could be applied to select between the top com-

pounds, for example by measurement of another relevant

property. Alternatively, the property values of the top

compounds could be measured with greater precision to

reduce the error bars to the point where a sufficiently

confident selection can be made. If the number of indis-

tinguishable compounds is large, it may be appropriate to

sample a subset for further investigation. In this case it may

also be appropriate to make a structurally diverse sample to

spread risk and increase the information gathered.

Conclusion

We have explored approaches to account for the uncertain-

ties in compound data and the impact these have on decisions

regarding the selection and prioritisation of compounds.

Neglecting uncertainties can lead to poor decisions, resulting

in wasted time and effort and missed opportunities. The last

of these is possibly themost insidious because, once rejected,

it is rare to return to a compound or series, so the lost value is

unlikely to be discovered.

The requirements for good decision-making vary

depending on the stage of a project. Early in a project, there

may be many compounds and multiple series under con-

sideration and the cost of progressing a compound is small.

Therefore, arguably, it is more important to identify com-

pounds that may be rejected with confidence, because the

opportunity cost of missing a good compound is higher

than the cost of progressing compounds that will fail at the

next step. Later, for example when selecting a development

candidate from a small number of options, it is important to

be confident that the selected compound will succeed,

because of the high cost of pre-clinical and clinical

development of a candidate that fails.

Further analysis of the impact of uncertainty on deci-

sions can yield answers to strategic questions regarding the

value of different sources of data to decision-making, in

light of the confidence they provide [11]. This analysis uses

Bayesian probability theory [12] which requires a knowl-

edge of the prior probability distribution, or underlying

distribution of the property, in question. However, the

scope of this analysis is currently limited because priors for

the most prevalent risk factors for compound optimisation

are not generally known.

Finally, as we have seen, the mathematics involved in

assessing the impact of uncertainties can be quite daunting,

which leads to the temptation to ignore uncertainty and

hope for the best! Therefore, it essential that chemistry

software can automatically propagate uncertainties through

data analyses and present the results in an intuitive way to

guide effective decisions on compound optimisation.
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