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Cytochrome P450s

e Ubiquitous superfamily of
haem-containing
monoxygenase enzymes

Zanger and Schwab, Pharmacol. & Therapeut. 138(1) p. 103 (2013)



Cytochrome P450s

e Responsible for ~70-80% of drug metabolism, leading to:

— Rapid clearance or low bioavailability
— Potential for drug-drug interaction
- Impact of P450 polymorphism

— Bioactivation to form
reactive/toxic metabolites
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P450 Catalytic Cycle

e |nsertion of oxygen into ligand
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Predicting P450 Metabolism
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Methods

Two primary factors determine the site of metabolism:

e Electronic properties of substrate

- H abstraction — aliphatic oxidation, N-dealkylation, O-dealkylation

— Direct oxidation —aromatic oxidation, epoxidation, N-oxidation, S-
oxidation

— Activation barrier to abstraction of H and direct oxidation
- Independent of isoform

e Orientation of substrate in active site
- Electrostatic interactions with between protein and substrate
— Freedom to move

— Steric accessibility
— Dependent on isoform and substrate



Electronic Effects
Trends in Metabolism Correlate with Radical Stability

6AH; (kcal/mol) Reaction Type
N 173 M-dealkylation
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196 benzylic hydroxylation

\/0\ 266 O-dealkylation

\/\ 217 aliphatic hydroxylation
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\/\ 33 w-hydraoxylation

Korzekwa, Jones and Gillette, J. Am. Chem. Soc., 112, p. 7042 (1990)



Electronic Models for CYP Reactivity

e Semi-empirical QM methods used to
calculate energies of substrate and
reaction intermediates

e Bronsted relationship to generate
activation energy

Energy

e Fragment considered in context of
molecular environment >

— Not considered as a discrete uniform Reactants Transition Inter-
entity state mediates

— Subtle longer range effects can be
captured

- Important when developing a lead AI_IA X AI_IR
series

© 2015 Optibrium Ltd. 9



Electronic Models for CYP Reactivity

e Free energy relationships have been developed to predict
activation energies for oxidation reactions
— Hydrogen atom abstraction
— Aromatic oxidation
— S-oxidation
- N-oxidation

- Epoxidation

e Models have been parameterized with:

- Experimental data*
— Ab initio calculations’

*Jones, Mysinger & Korzekwa, Drug Metab. Dispos., 30(1) p. 7 (2002)

"Rydberg et al. ACS Med. Chem. Lett. 1 p. 96 (2010)



Steric and Orientation Effects

e Binding within active site restricts the accessibility of sites to
the active oxy-haem species

e Structure of ligand introduces steric hindrance

e Corrections to activation energy estimated with statistically
trained model using 2D descriptors, including

. : - Number of

— Distances to charged functionalities, Isoform
H-bond acceptors/donors, lipophilic groups Molecules
P » IPOPTHIRE DR 34 305
— Distances to rings, flexible linkers, ‘bulky’ groups 2D6 202
2C9 193
e Trained and tested using high-quality 1A2 201
. . 2C19 184
regioselectivity data sets carefully curated from - 105
the literature 2C8 106
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Validation
Independent test sets of 30% of data
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Metabolite Structure Generation

e SMIRKS patterns used to generate metabolite structures, e.g.

Reaction _____[SMIRKS___________

Aliphatic hydroxylation [C;X4:1][H:2]>>[C:1][O][H:2]
Aromatic hydroxylation [c:1][H:2]>>[c:1][O][H:2]

N dealkylation [#7:1][C:2]([H])>>[#7:1][H].[C:2]=[O]
S oxidation [#16:1] >> [#16:1](=[O])

e Metabolites can be exported into a new data set for further
analysis, e.g. activity, physicochemical properties, etc.

— Output exact mass to aid metabolite ID experiments



Example Regioselectivity Prediction
Venlafaxine
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Site Lability
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P450 Metabolic Lability

Rate limiting steps € 2e+2H+ H,O + Fe

e Oxidation of a site on the molecule is in competition with
water formation (and deactivation of the P450 active site).

e Site lability is a measure of how easily a site is oxidised
compared to water formation, governing the efficiency of
product formation.



P450 Metabolic Landscape
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Composite Site Lability (CSL)

e The Composite Site Lability is a measure of the efficiency of
metabolism of a molecule by CYP3A4

e CSL varies between 0.0 and 1.0

— Lower values imply greater metabolic stability

e A labile site on a molecule may need modification to
improve its stability

e Site lability is an important factor affecting rate of
metabolism, but other factors are important

- E.g. binding affinity, reduction rates (type | and type Il binding)



Example
Clozapine vs Amoxapine
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Conclusions

e Models of P450 metabolism can accurately
predict site of metabolism and metabolites

e Predicting sites of metabolism is useful but
not sufficient for compound design

e QM approaches can be used to estimate lability on an
absolute scale

— With corrections for steric accessibility and orientation

- Fragments considered in their molecular environment
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