
Novel lead optimization strategy 

using Quantitative Structure-Activity 

Relationship (QSAR) and Physiologically-

Based Pharmacokinetics (PBPK) modeling
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Predicting Human PK/ADME/Dose (FIH and beyond) for the First-In-Class or 

Best-In-Class Drug Candidates by extrapolating from in-silico/in-vitro/in-vivo 

preclinical study data

E.g., ABT or BDC Studies 
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Lead optimization과정에서고려할것

ADME property, PK parameter, Efficacy&Safety가균형을이룰때신약개발로의발전이가능
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QSAR (Quantitative Structure-Activity Relationship)

 QSAR (Quantitative Structure-Activity Relationship) 란?

• 정량적구조-활성상관관계. 

• Lead compound와이에대한 derivatives에 QSAR를적용하면
화합물의분자구조가갖는물리화학적특성에따른생물학적활성
변화를정량적으로분석할수있음.

QSAR modeling을통해 compound의 efficacy, ADME properties를예측가능

QSAR modeling을이용하여더나은 compound를가상으로합성가능

QSAR modeling 결과를이용하여수많은화합물들을 ranking order 가능.



QSAR (Quantitative Structure-Activity Relationship)

Ortwine DF et al., Physicochemical and DMPK In Silico Models: Facilitating Their Use by Medicinal Chemists,

Molecular Pharmaceutics, 2013, 10, 1153-1161. 
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PBPK (Physiologically-based Pharmacokinetics)

 PBPK (Physiologically-based Pharmacokinetics) 란?

• 생리학적특성을고려한약물동태학.

• 약물의체내동태를정확하게예측하기위해생리학적특성을고려하
여생체를구성하는각조직및장기를혈류와연결하여모델링.

즉, 생리학적특징, 약물의특징, 약물과생체반응의특징을 modeling에도입하
면다양한조건에따른혈중농도및표적장기에서약물농도를예측가능.



PBPK (Physiologically-based Pharmacokinetics)
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Natile Hosea - Pfizer

Physiologically based pharmacokinetic model (Gastroplus in this case)



Advantages for using computational simulation in drug 

discovery

 비용대비, 보다효율적으로결과예측

 In vitro/in vivo resource의효율적활용가능

 Prospective analysis를통해예측성공률재고

 Retrospective analysis를통해모델재평가, 오류발견시원인분석

 보다나은시뮬레이션모델확립

 Early human PK/metabolism read-out을통해보다효율적으로
신약후보물질도출가능



Applications : using StarDrop™ and GastroPlus®

 ‘Discovery of  Cyclic Sulfone Hydroxyethylamines as Potent and Selective β-Site APP-Cleaving 

Enzyme 1 (BACE1) Inhibitors: Structure-Based Design and in Vivo Reduction of  Amyloid β-

Peptides’ 논문을참고. 

 이는 Alzheimer’s disease (AD)의특징인 amyloid-β (Aβ) peptide의생성을줄이기위해

β-Site APP-Cleaving Enzyme 1 (BACE1) 에대한 inhibitor를 AD의치료제로서제안한

문헌임. 

 위의논문에제시된화합물과 in vitro efficacy값을이용하여 StarDrop™을통해

QSAR모델링을소개하고, 위의논문중 in vivo 결과가존재하는화합물을기반으

로 GastroPlus®를통해 PBPK 모델링을소개하고자함. 



Applications : using StarDrop™ and GastroPlus®

Innovative CNS drug discovery strategy using in silico tools



Applications : using StarDrop™ and GastroPlus®

Figure 1. Development of an user-defined QSAR model for IC50 prediction using StarDrop Auto-Modeller™. The best predicted 

model was produced by the GPFixed algorithm. (R2=0.85 ; validation set and test set).



Figure 2. In silico generation of new library compounds using StarDrop Nova™

Applications : using StarDrop™ and GastroPlus®



Figure 3. Production process of CNS Multi-Parameter Optimization(MPO) score.

Applications : using StarDrop™ and GastroPlus®



(a)

(b)

(c)

Figure 4. (a) 626 compounds virtually generated using StarDrop Nova™. (b) Compounds rank-ordered based on the

composite scores. (c) The composite scoring rule used for BACE-1 inhibitors.

Applications : using StarDrop™ and GastroPlus®



Figure 5. Score distribution of all compounds tested by user-defined scoring rule and global ADME/CNS models.

Applications : using StarDrop™ and GastroPlus®



Figure 6. Metabolic soft spot analysis of selected compound using StarDrop P450™.

Applications : using StarDrop™ and GastroPlus®



Figure 7. Predictive PK profile at logarithmic scale for 3 compounds(14c, 60h, 60j) of reference.

Applications : using StarDrop™ and GastroPlus®

Result 14c 60h 60j 

Obs.

*
Sim.*

Obs.

*
Sim.*

Obs.

*
Sim.*

AUC 0-t 

(ug∙h/mL)
2.6 1.9 0.20 0.3 0.3 0.3

Vdss (L/kg) 1.6 2.8 7.2 6.4 16.3 9.5

T1/2 (hr) 4.0 4.8 1.4 1.6 2.0 2.4

*Obs. – Observed value, *Sim. – Simulated value
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Figure 8. (a) PK profiles of compound 5 in four species (mouse, rat, dog and human) using GastroPlus ® PBPK

modeling. (b) Absorption and dissolution profiles predicted in human PBPK model. (c) Relative compartmental

absorption predicted in human.

Applications : using StarDrop™ and GastroPlus®
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Natilie Hosea - Pfizer



DD I prediction by SIMCYP : CYP3A4 reversible inhibition

Stoch et al., 2009 J Clin Pharmacol 49:393-406

PK parameters (mean) of midazolam in the absence and presence of 

ketoconazole

AUC (ng/ml.h) Cmax (ng/ml) t1/2 (h)

Control 19 7.2 2.6

+ ketoconazole 196 36.1 4.9

fold change 10.3

PK parameters (mean and 90% CI) of midazolam in the 

absence and presence of ketoconazole

AUC (ng/ml.h) Cmax (ng/ml)

Control 41 (6 - 106) 7.5 (2 - 15)

+ ketoconazole 254 (80 – 487) 25 (10 – 40)

fold change 10.3 (3.2 - 24.1)

Mean Values of Systemic concentration in plasma of Sim-

Midazolam with and without Interaction over Time using Sim-

Ketoconazole
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Case study: FDA review of ibrutinib

• Predominantly metabolized by CYP3A

• Clinical drug interaction studies:

– With strong CYP3A inhibitor ketoconazole: AUC increased by 

~24 fold

– With strong CYP3A inducer rifampin: AUC decreased by >90%

• What are expected exposure changes with other CYP3A 

inhibitors or inducers?

• What is dosing recommendation in patients who have to take 

CYP3A inhibitor/inducer?

29http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/205552Orig1s000ClinPharmR.pdf



What are expected exposure changes with other 

CYP3A inhibitors or inducers?

30

PBPK-Simulated and observed Cmax and AUC ratios (mean and 95% confidence interval)

http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/205552Orig1s000ClinPharmR.pdf



What is dosing recommendation in patients who have to 

take CYP3A inhibitor/inducer?

31

FDA analysis using sponsor’s model to support dosing strategy for the 

coadministration of ibrutinib with CYP3A perpetrators: dose-staggering with 

Strong CYP3A inhibitors 

http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/205552Orig1s000ClinPharmR.pdf



Simulations supporting dose optimization 

(FDA in house analyses)

32http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/205552Orig1s000ClinPharmR.pdf



성공적인 PBPK modeling 사례
Ibrutinib Package Insert: What are expected exposure changes 

with other CYP3A inhibitors or inducers? 
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Thank you

| ACS National Meeting, San Francisco, Aug 2014 | Pankaj R. Daga | 8/10/2014 | PBPK/GSA in lead Optimization


