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Drug discovery scientists often consider compounds and data in terms of groups, such as chemical series,

and relationships, representing similarity or structural transformations, to aid compound optimisation.

This is often supported by chemoinformatics algorithms, for example clustering and matched molecular

pair analysis. However, chemistry software packages commonly present these data as spreadsheets or

form views that make it hard to find relevant patterns or compare related compounds conveniently.

Here, we review common data visualisation and analysis methods used to extract information from

chemistry data. We introduce a new framework that enables scientists to work flexibly with drug

discovery data to reflect their thought processes and interact with the output of algorithms to identify

key structure–activity relationships and guide further optimisation intuitively.
Introduction
In drug discovery, project scientists think about their compounds

in many different ways. At the level of an individual compound,

we want to know its biological and physicochemical properties.

For example, is it active against the intended target(s)? Does it

have appropriate absorption, distribution, metabolism and ex-

cretion (ADME) properties? Is it likely to have off-target effects or

cause toxicity? However, although the ultimate goal of every

discovery project is the nomination of a high quality develop-

ment candidate, this outcome is typically the result of investiga-

tions of many compounds. Therefore, to help us to navigate this

selection and optimisation process, we often organise com-

pounds using a variety of conceptual frameworks. We often

consider compounds in groups, such as chemical series, clusters

or ‘bins’ (e.g. progress, reject and study further). We also consider

relationships between compounds: optimisation steps or trans-

formations to find modifications that improve activity or other

properties; synthetic steps; structure–activity relationships (SAR)

that will guide further compound optimisation; and retrospective
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analysis of project progression in the hope of learning lessons for

future projects.

Given the many and varied ways that project scientists consider

compounds, their data and relationships, it is perhaps surprising

that software packages to support drug discovery chemistry almost

always presents those data as spreadsheets or form views (Fig. 1).

These are essentially long lists that make it hard to find relevant

patterns, focus on subsets of data or even conveniently compare a

small number of related compounds. To overcome this constraint,

we have even seen project teams print their compounds on sheets

of paper and spread them out on a table. Some technological

approaches have been explored to address this, for example by

Roche (http://youtu.be/3qrQTLs1hPs); but in the age of modern,

touch interfaces (Fig. 2), from the perspective of user interaction,

chemistry software has largely been stuck in the 1990s.

Often, advanced chemoinformatics algorithms are used to ana-

lyse complex compound data and extract important patterns and

SAR. However, although these can identify inconspicuous rela-

tionships between compounds and their properties, the output

also tends to be presented as yet more tables or spreadsheets,

making it difficult to interpret and act upon the results and often
www.drugdiscoverytoday.com 1093
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(a)

(b)
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FIGURE 1

Examples of spreadsheet and form views of compound datasets. (a) A spreadsheet in which each row represents a compound and the columns contain data
including the compound structure and identifier, experimentally measured and calculated properties. The data cells in the spreadsheet have been coloured to

produce a heat map on a colour scale from ideal values in green to unacceptably poor values in red. (b) An example of a form view in which the properties of a

single compound (shown centred) are summarised. The properties for which criteria have been defined are also highlighted in a heat map on the same colour

scale as in (a).
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needing an expert to analyse the output to reach a conclusion.

Data visualisations, such as scatter plots, box plots, pie charts,

histograms and SAR tables can help, and illustrative examples are

shown in Fig. 3. However, beyond a link to a spreadsheet of data, so

that points in a plot can be selected to highlight the corresponding

rows, these are static displays of the raw data. They do not allow a

scientist to impose their own order on the data to represent the

way in which they are thinking about the project compounds.
1094 www.drugdiscoverytoday.com
Perhaps paradoxically, we would like to visualise structured data in

an unstructured way.

In this review, we will present the methods that are commonly

used to impose order on, and extract information from, chemistry

data and the ways in which this information is typically viewed.

We will then introduce a new framework, in which compound

structures and data are arranged as cards, which can be positioned,

stacked and linked under the complete control of a scientist. We
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(a)
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FIGURE 2

Modern touch interfaces provide a natural and intuitive way to interact with data: (a) tablets ideal for individuals to explore their data and (b) larger touch-screens

can facilitate interactive group discussions.
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will illustrate how this can be used to work with drug discovery

data in the way that we think about them and how it can be used to

view and interact with the output of algorithms quickly to identify

key SAR with which to guide further compound optimisation.

Chemoinformatics algorithms
Numerous chemoinformatics algorithms are routinely applied to

compound datasets. These find patterns and highlight relation-

ships that help to select compounds or series and guide further

optimisation [1]. Here, we briefly describe some common methods

and the ways in which they are applied.

Clustering
Clustering algorithms group together compounds that are similar

in terms of structure or properties. A common application of
clustering is to identify series of similar compounds within a

diverse dataset, for example to identify hit series from a high-

throughput screening campaign. There are numerous clustering

methods that can be applied to this challenge, including K-means

[2], Jarvis–Patrick [3] and dbclus [4], based on distance between

compounds in a descriptor space or measures such as Tanimoto

similarity [5] between structural fingerprints. Common substruc-

ture [6] or scaffold [7] detection methods can also be used to cluster

compounds that share a significant structural motif. Other meth-

ods have been applied to represent chemical diversity visually and

identify trends across a dataset of compounds, such as a library,

chemical series or the ‘chemical space’ explored by a project [8].

These include simple, linear methods such as principal component

analysis [9], multidimensional scaling (MDS) [10] and visual clus-

tering techniques such as the t-distributed stochastic neighbour
www.drugdiscoverytoday.com 1095
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FIGURE 3

Examples of common approaches to visualise data. (a) A three-dimensional scatter plot for a dataset of compound, in which the affinity for a therapeutic target

(pKi), calculated logarithm of the octanol:water partition coefficient (log P) and logarithm of the aqueous solubility in micromoles (log S) have been plotted. The

points are coloured by predicted inhibition of the human ether-a-go-go (hERG) ion channel from low (red) to high (yellow) and the size of each point is

proportional to the logarithm of the concentration ratio between brain and blood. Created with StarDropTM [28]. (b) A box plot is a good way to compare the
distributions of a property between groups of compounds. In this case chemical series are plotted on the x-axis and the affinity for a therapeutic target (pKi) on the

y-axis. The horizontal line shows the median value for each series, the top and bottom of the box indicate the 75th and 25th quartiles, respectively, the whiskers

show the 90th and 10th centiles and outliers are shown as individual points. One example point is annotated with the corresponding compound structure.

Created with StarDropTM [28]. (c) A ‘chemical space’ plot of a compound library in which each point represents a single compound and the proximity of points
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embedding method (t-SNE) [11]. The main limitation of clustering

methods is that the results often do not correspond to a chemist’s

eye view of what constitutes a chemical series and, hence, the

results often need to be manually refined before they can be used

effectively; a time consuming and tedious process.

Activity landscapes and cliffs
Popularised by Guha and Van Drie [12] and Bajorath et al. [13,14],

activity landscapes compare all of the compounds in a dataset to

identify the most structurally similar and highlight where there

are significant differences in property values between similar

compounds. This is sometimes represented by a structure–activity

landscape index (SALI) [12] defined in Eqn 1:

SALIi; j ¼
jAi � Ajj

1 � simði; jÞ ; (1)

where Ai is the activity of compound i, Aj is the activity of

compound j and sim(i,j) is the structural similarity between com-

pounds i and j. Regions of the landscape with high SALI values

indicate that small structural changes yield large changes in an

activity, representing interesting SAR. In regions where SALI values

are small, this indicates a ‘flat spot’ where there is little strong SAR

and can indicate that the opportunities for optimisation of that

activity are limited. A related index, the structure–activity rela-

tionship index (SARI) has been proposed by Peltason and Bajorath

[15] that provides a quantitative score for a set of compounds

reflecting whether the SAR within the set is continuous, discon-

tinuous or heterogeneous.

A simpler application of this analysis can be used to compare a

single reference compound with other, related compounds. This is

often applied to identify activity cliffs, which are small changes in

structure that give rise to large changes in a property [16,17]. These

discontinuities can highlight important interactions or shape

constraints that represent useful SAR; alternatively, they can flag

outliers that require further investigation.

Matched molecular pair analysis
Matched molecular pair analysis (MMPA) identifies pairs of com-

pounds that differ by a single, small contiguous fragment (i.e.

where there is a single point of variation such as a change in R-

group, linker or a ring change). By analysing existing datasets

containing similar compounds for which the same properties have

been measured, MMPA can identify transformations that have a

consistent, significant impact on a property of interest, such as

target activity, physicochemical or ADME properties [18–20].

These transformations could provide useful strategies for optimi-

sation of novel compounds.

The principle of MMPA appears to provide a useful strategy to

guide optimisation, based on analysis of large, diverse datasets of
indicates their structural similarity – 2D path-based similarity calculated by a Tanim

those that are far apart are diverse on the scale of the library, as illustrated by the thr
against a multiparameter profile from the highest scoring in yellow to the lowest

distribution of log S for different combinations of substituents at positions R1 and R2

each combination is represented as a pie chart with three categories: high (yellow), m

of compounds with each combination of R1 and R2 from the smallest representing
[28]. (e) A similarity network in which each compound is represented by a circle an

than 0.7. Created with Cytoscape [29] and ChemViz (http://www.cgl.ucsf.edu/cyto

clustering. In this, each ‘leaf’ at the bottom represents a single compound and cluste

formation of larger clusters of less similar compounds. The proximity of the leave
corresponding compounds. Created using KNIME (http://www.knime.org/).
compounds and measured activities. However, when applied

across datasets covering diverse chemistries and targets, the

changes in activities associated with a transformation are most

often distributed roughly symmetrically with an average of zero

[21]. This means that statistically significant conclusions cannot

often be drawn about the probable impact of a given transforma-

tion. We can understand this because the impact of a transforma-

tion will be highly dependent on the context in which it is applied;

it will be related to the binding environment in the vicinity of the

substitution point, which, in turn, is influenced by the intended

target and the overall structure and properties of the compound to

which the transformation is applied. Approaches to improving the

reliability of predictions generated by analysis of simple transfor-

mations have been proposed, through analysis of matched series

(i.e. series of more than two transformations applied to the same

scaffold), from which more information on the binding environ-

ment can be inferred [22,23]. However, MMPA relies on easily

identifying the context in which a transformation will apply and,

conversely, where it is unlikely to be effective.

Limitations of application
Chemoinformatics algorithms can provide useful analyses of com-

plex datasets to identify SAR that guide compound optimisation,

as evidenced by examples in the references above and the increas-

ing adoption of these methods. However, they are not applied as

effectively as they might be, owing to the fact that their outputs are

often challenging to understand, requiring an expert to interpret

the results and provide recommendations to a project team. This

interpretation can be very time consuming, particularly in light of

the limitations discussed above, and the delay in providing feed-

back means that decisions regarding a further design iteration can

be made before the results are available. More intuitive representa-

tions of the results, to make them more accessible to non-experts,

would encourage more interactive application and timely feed-

back. This would, in turn, increase the impact of such analyses on

the decisions made in the course of an optimisation project.

Data visualisation
Data visualisation is widely used to help with the interpretation of

complex data, to identify trends, find SAR and select compounds

for progression [24]. A host of visual representations for chemistry

data have been implemented in a wide variety of software

packages, some of which are summarised in Table 1. Figure 3

shows some common examples of visual representations used

to interpret data and represent the output of chemoinformatics

analyses. A detailed overview of data visualisation techniques is

beyond the scope of this review, but some illustrative examples

include:
oto index [5]. Points that are close together are structurally similar, whereas

ee points for which structures are shown. The points are coloured by the score
 scoring in red. Created with StarDropTM [28]. (d) A SAR plot showing the

 in a series of compounds with a common scaffold. The distribution of log S for

edium (orange) and low (red). The size of the pie chart indicates the number

 a single compound to the largest representing 14. Created with StarDropTM

d links are shown between compounds with a Tanimoto similarity [5] greater

scape/chemViz/). (f) A dendrogram is often used to illustrate hierarchical

rs are indicated by bifurcation points. Moving up the tree corresponds to the

s corresponds approximately to the structural similarity between the
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TABLE 1

Examples of software applications used for chemistry data visualisation

Software Description Developer Link

Cytoscape and ChemViz ChemViz is a chemoinformatics layer on

top of the open source Cytoscape platform

for network visualisation

UCSF (ChemViz) http://www.cytoscape.org/ and

http://www.cgl.ucsf.edu/cytoscape/chemViz/

Data Warrior Free chemistry data visualisation tool Actelion Pharmaceuticals http://www.openmolecules.org/datawarrior/

SentiraTM A chemically aware desktop tool for
data visualisation

Optibrium https://www.sentira-software.com/

Seurat A data sharing and visualisation tool for

all members of a discovery team

Schrödinger http://www.schrodinger.com/Seurat/

SpotFireW A chemically aware layer built on an

extensive data analytics platform

Tibco and Perkin Elmer http://www.cambridgesoft.com/ensemble/spotfire/

StarDropTM Comprehensive compound optimisation platform

including data visualisation and Card ViewTM
Optibrium http://www.optibrium.com/stardrop/

Vortex Data visualisation and analysis solution

with full chemical structure intelligence

Dotmatics http://www.dotmatics.com/products/vortex/
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� Heat maps or ‘traffic light’ displays – commonly used to provide

context within a spreadsheet of data by colouring cells green for

property values that ‘pass’ a criterion, red for those that ‘fail’

and yellow/orange for those that are ‘close’ (Fig. 1).
� Plots, charts and graphs – often used to present and explore

multidimensional data (Fig. 3a,b). Results from analyses such as

a ‘chemical space’ can also be displayed as a scatter plot, to

identify ‘hot spots’ of active compounds quickly or those that

have desirable properties (Fig. 3c).
� SAR plots, such as the example in Fig. 3d – display the results of

an R-group analysis within a chemical series. In these, the

distribution of a property can be shown for different combina-

tions of substituents at two positions on a common scaffold.
� Network diagrams – often used to represent activity landscapes,

in which compounds are shown as points that are linked to

structurally similar compounds [12,17,25] (Fig. 3e). The colour

of link can reflect the change in a property value, SALI or SARI,

whereas the size and colour of the points can represent

additional properties.
� The results of clustering can be represented as a dendrogram or

tree structure that shows relationships within and between

clusters of similar compounds. As shown in the example in

Fig. 3f, each ‘leaf’ represents a compound and the ‘tree’ can be

traversed to identify clusters of a desired size and diversity.

There are, of course, many other useful forms of visualisation

not shown in Fig. 3 in the interests of space, including categorical

plots showing probabilistic relationships between binned ranges

of property values, ‘radar’ or ‘spider web’ plots that enable several

compound properties to be viewed simultaneously and pie charts

that show property distributions for groups or clusters of com-

pounds (additional examples are shown in the Supplementary

Material online).

Data visualisations are aesthetically appealing and provide a

way to present conclusions in an impactful way. However the

complexity of data often makes it difficult to draw conclusions in a

rigorous manner. This is exacerbated by the limited ways in which

a scientist can interact with the views of their data: compound

structures can be associated with elements of the visualisation,

such as a point on a scatter plot, and selecting an element can
1098 www.drugdiscoverytoday.com
highlight the corresponding row(s) in a spreadsheet. Multiple

views of data can also be linked dynamically to aid exploration

across multiple parameters or properties. However, having created

a visualisation, the display is essentially static and it is not possible

to refine the view further, based on the experience or opinion of a

user, or share with colleagues.

Playing with cards
Much greater flexibility can be introduced in the way we represent

and interact with compound structures and data by ‘breaking free’

from the traditional chemical spreadsheet metaphor. The objec-

tives of this are to:
� provide an intuitive way that a scientist can organise compounds

to reflect the way they are thinking about their project;
� represent the results of chemoinformatics methods to interpret

more easily and act on their output, combining a computer’s

ability to analyse complex data, with an expert’s understanding

of the underlying chemistry and data;
� share and present results to communicate conclusions clearly

and provide the flexibility for scientists from different

disciplines to view the data in which they are most interested;
� enable interactive discussions between members of a project

team, possibly using a large screen.

To illustrate this we will describe one such approach, called Card

ViewTM, which is implemented in the StarDropTM software plat-

form. Other examples of environments that have explored some of

these concepts are Scaffold Explorer [26] and Scaffold Hunter [27].

Cards
In Card ViewTM, each compound is represented as a ‘card’ that can

be positioned with complete freedom to create a layout according

to a user’s interpretation and understanding. Cards can also be

coloured by a chosen property to highlight interesting compounds

for further investigation. A card displays a structure and the most

relevant data for a compound, making it easy to compare com-

pounds across multiple criteria; some example cards are shown in

Fig. 4a. The data displayed on a card can be chosen to reflect the

most relevant information for a project, different sizes of cards can

be used to display more or less data and a card can have multiple

http://www.cytoscape.org/
http://www.cgl.ucsf.edu/cytoscape/chemViz/
http://www.openmolecules.org/datawarrior/
https://www.sentira-software.com/
http://www.schrodinger.com/Seurat/
http://www.cambridgesoft.com/ensemble/spotfire/
http://www.optibrium.com/stardrop/
http://www.dotmatics.com/products/vortex/
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FIGURE 4

Illustrations of the key elements of Card ViewTM. (a) A card represents a single compound. In these examples, each card shows the structure of the corresponding

compound. The card on the left also displays the score against a multiparameter profile of property criteria, in which the impact of each individual property is indicated
by the accompanying histogram and the measured affinity against the compound’s therapeutic target. On the right, the card shows a summary of the drug-like

properties of a compound: log P, molecular weight (MW), topological polar surface area (TPSA) and count of rotatable bonds. The card on the right is coloured to

indicate the affinity against the therapeutic target. (b) Stacks represent groups of compounds. Each stack shows the structure of a representative example of the

compounds in the stack. The stack on the left shows the distribution of the affinities of the compounds in the stack as a histogram, the distribution of scores against a
multiparameter profile as a box plot and a compact histogram showing the distribution of log P values, where the colour indicates the log P value from low (red) to high

(yellow) and the area corresponds to the proportion of compounds. On the right, the cards in the stack are coloured by pKi against the therapeutic target of the

compounds and the box plots give a summary of the distributions of key properties: target affinity (pKi), log P, MW, TPSA, log S, hERG inhibition and blood–brain barrier

(BBB) penetration. (c) A link indicates a relationship between two compounds. In this example, the links represent optimisation steps and the colour of each link
indicates the change in affinity for the therapeutic target in the direction of the arrow, from a large decrease (blue) to a large increase (red), with zero change indicated

by a grey link. The colours of the cards represent the score against a multiparameter profile, also shown on the cards, from low (red) to high (yellow).
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(a)

(b)

Drug Discovery Today 

FIGURE 5

Example layouts in Card ViewTM generated by chemoinformatics algorithms. (a) An example of clustering based on common substructure, in which each cluster is

represented by a stack of cards. Each stack displays the substructure that all compounds in the stack have in common, as well as the number of cards in the stack
and the proportion of all cards that this represents. Stacks with similar common substructures are positioned close to one another, making it easy to identify when

the same series is represented by multiple clusters and improve the classification of compound by interactively merging stacks (as illustrated in Video S1 in the

Supplementary Material online). (b) This output conveniently identifies activity cliffs around a reference compound (centre). The other compounds are arranged in

1100 www.drugdiscoverytoday.com
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(c)
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Fig. 5. (Continued ).
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‘pages’, enabling quick access to additional information. Card

‘templates’ can also save predefined designs that can be applied

to any dataset, to change the view of compounds instantly to

reflect the most relevant properties for each scientist. Simply

placing cards next to one another makes it easy to compare the

corresponding compounds to choose between small groups and

understand property differences in terms of structure.

Stacks
Cards can be grouped to create ‘stacks’ of compounds, by ‘drop-

ping’ one card on top of another and further cards can be added to

the stack in a similar way. A stack summarises the distribution of

properties of the compounds within the stack (Fig. 4b). As with

cards, the most relevant data can be summarised by displaying

numerical averages, histograms or box plots and templates make it

easy to switch between views. Stacks can be used to compare

groups of compounds conveniently, whether they represent series,

clusters or arbitrary groupings.

Links
A link represents a relationship between two compounds, for

example a synthetic step, a more general transformation or struc-

tural similarity. Links can be directional (with an arrow) or

nondirectional and can be coloured to highlight large changes
order of decreasing structural similarity with the reference in a spiral from the centr

compounds; the arrow shows the direction of increase of the target affinity (pKi) 

maximum difference of 3.5 log units (red). The cards are coloured by the overall sco
(c) Matched molecular pair analysis (MMPA) can be represented as a network of card

The arrow on each link indicates the direction of increase of the target potency (pK

maximum difference of 2.9 log units (red). The network view indicates that there 

shown is a table view of the matched pair transformations showing the number o
change in affinity (pKi) and predicted log S and log P. This table is coloured as a he

representing no change, to the maximum increase in red. One row of the table is sel

the network. The transformation in the selected row represents removal of a benzyli

table, a histogram also shows the distribution of the changes in affinity for the f
highlighted by a yellow boundary, is inconsistent with the trend for the other th
that correspond to interesting SAR. Links can be used to create

layouts such as trees or networks automatically to highlight rela-

tionships within the context of a dataset or project, such as an

optimisation flow, as illustrated in Fig. 4c. This view could be used

to perform a retrospective analysis of a project to understand how

progress was made, where barriers were encountered and learn

lessons that could be applied to the conduct of further projects.

Annotations
In addition to laying out cards, stack and links, it is important to

capture ‘freeform’ information that reflects the thoughts and ideas

of a scientist or project team. This has often been described as a

project ‘whiteboard’. Notes can be made on individual cards to

record comments on individual compounds and card layouts can

be annotated by drawing or adding text labels. These annotations

can be saved with a dataset and also copied as images to commu-

nicate conclusions in presentations or reports.

A flexible environment for understanding
Environments such as Card ViewTM enable scientists to organise

their data easily to make and present decisions based on their

understanding of the compounds and data they are exploring.

However, this also provides a novel and intuitive way in which to

view and interact with the results of data analysis algorithms, such
e outwards. Links are shown between the reference and the ten most similar

and the colour indicates the magnitude of the increase from 0 (grey) to the

re against a multiparameter profile from the lowest in red to highest in yellow.
s in which each pair of cards representing a matched molecular pair are linked.

i) and the colour indicates the magnitude of the increase from 0 (grey) to the

are three separate series in which transformations have been explored. Also

f times each transformation occurs in the dataset and the average resulting
at map from the maximum decrease of each property in blue, through white

ected (highlighted in blue) and the corresponding links are also highlighted in

c group and results in an average increase in affinity of 1.5 log units. Below the

our examples of this transformation. One example of the transformation,
ree, highlighting a context in which this trend does not apply.
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as those described above. For example, the output of a clustering

algorithm can be shown as stacks, facilitating the comparison of

the resulting clusters to find high quality chemical series. Further-

more, the stacks can be arranged to show their relationships, for

example by positioning similar clusters close to one another, as

shown in Fig. 5a. This can help to spot where the clusters do not

reflect a chemist’s view, as discussed above, and the results can be

easily fine-tuned, to merge clusters or remove compounds that

should not be associated with a series or common scaffold (this

interaction is illustrated in Video S1 in the Supplementary Material

online). A common, alternative approach, in which clustering

results are presented as a large table of structures and cluster labels,

makes this fine-tuning process time consuming and laborious.

Activity cliffs around a reference compound can be conveniently

identified by displaying the neighbourhood of similar compounds

using links (Fig. 5b). In this view, the compounds are arranged as a

spiral with the reference compound in the centre and the remaining

compounds in order of decreasing structural similarity from the

centre outwards. The nearest neighbours are indicated by links,

where the arrow shows the direction of increase of a chosen property

and the colour of the link corresponds to the magnitude of the

increase. Thus, activity cliffs representing important SAR around the

reference compound are clearly highlighted as short, brightly

coloured links for further investigation. For example, from the

analysis in Fig. 5b it can be clearly seen that a polar group at position

C-8 is strongly preferred over the same group at C-5. Furthermore,

potency in this series appears to be enhanced by a small, lipophilic

group substituted on the nitrogen, whereas larger substituents at

this position appear to decrease the potency.

Activity landscape analysis and MMPA, which explore relation-

ships across an entire dataset, can be represented as a network, as

suggested by Guha and Van Drie [12] and Stumpfe and Bajorath

[17], among others. However, instead of points, the nodes of these

networks are cards, enabling easy comparison between related

compounds across multiple properties. Furthermore, a similar

representation can help to address the context issue for MMPA,

discussed above, by linking a conventional view of matched pairs

as a table of transformations with a network view (Fig. 5c). This

overview identifies the contexts in which a matched pair produces

a consistent change in a property or where this relationship does

not apply and, furthermore, the availability of additional data on

the cards allows the impact of a specific transformation on other,

important properties to be easily identified. In the example shown

in Fig. 5c we can see that the selected transformation, correspond-

ing to the removal of a benzylic group, has been explored in three

series and the results show a consistent increase in affinity for two,

similar series. However, in a third series, where the context in

which the transformation occurs is different, this trend does not

apply. A further video (Video S2 in the Supplementary Material

online) demonstrates the interactivity of this approach.
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Layouts, such as those in Card ViewTM, can also be linked with

conventional data visualisations, so that making a selection in one

view will highlight the corresponding compounds in all others

(Fig. 5c). This can use the strength of each approach to investigate

trends and patterns within a project’s data. There are numerous

analyses that can be represented in similar ways and, above all, it is

essential to the value of this approach that the results are not

represented as a static view but enable a scientist to interact with,

investigate and refine the results to reach a decision on how to

proceed quickly.

Concluding remarks
In this paper we have discussed the limitations of the ubiquitous

chemical spreadsheet that is used to present drug discovery data in

chemistry software. We have considered these limitations in the

context of commonly applied methods for visualisation and analy-

sis of chemistry data and described a novel approach to working

with data that provides much greater flexibility and interactivity.

However, flexibility must not come at the cost of interpretability

and ease of use. The Card ViewTM metaphor is intuitive and enables

fluid and dynamic interactions with data, whether using a mouse,

touchpad or, increasingly available, touch-sensitive screens.

We have illustrated some of the benefits of this approach to

organise data manually and represent individual compounds and

their relationships. Furthermore, the results of algorithms that

analyse larger and more-complex datasets fit naturally in this en-

vironment. These methods go beyond the practical limitations of

manual analysis to identify important SAR, but their effective use

has previously been limited to experts by the challenge of inter-

preting their outputs. The ultimate objective, of course, is not only

to produce aesthetically appealing images but also to enable better

decisions to be made more quickly and move drug discovery projects

forward to their goals of delivering high quality candidate drugs.

Supplementary material
Two videos are provided as supporting information, illustrating

the user interaction with Card ViewTM and how this can be used to

explore sets of compound data and the output of chemoinfor-

matics analyses. The first, Video S1, illustrates the use of clustering

and how the results can be fine-tuned by the user to reflect their

understanding of the chemistries. The second, Video S2, shows

user interactions with the results of an MMPA on a project dataset.
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