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Abstract 

A successful, efficacious and safe drug must have a balance of properties, including potency against its 
intended target, appropriate absorption, distribution, metabolism, and elimination (ADME) properties and an 
acceptable safety profile. Achieving this balance of, often conflicting, requirements is a major challenge in drug 
discovery. Approaches to simultaneously optimizing many factors in a design are broadly described under the 
term ‘multi-parameter optimization’ (MPO). In this review, we will describe how MPO can be applied to 
efficiently design and select high quality compounds and describe the range of methods that have been 
employed in drug discovery, including; simple ‘rules of thumb’ such as Lipinski’s rule; desirability functions; 
Pareto optimization; and probabilistic approaches that take into consideration the uncertainty in all drug 
discovery data due to predictive error and experimental variability. We will explore how these methods have 
been applied to predicted and experimental data to reduce attrition and improve the productivity of the drug 
discovery process. 
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Introduction 

A successful drug that passes the hurdles of clinical trials to gain approval and a strong market position must 
exhibit a delicate balance of biological and physicochemical properties. Such a compound must, of course, be 
potent against its intended physiological target(s); however, it must also have appropriate pharmacokinetics to 
reach the site of the target at a sufficiently high concentration and for an appropriate duration via the 
intended route of administration. Furthermore, for the compound to be safely administered, it must avoid 
unintended side-effects, drug-drug interactions and non-specific or idiosyncratic toxicities at the therapeutic 
dose.  The goal of drug discovery is to identify a successful compound as efficiently as possible. But, as the 
history of drug discovery has proved, this is a challenge of significant proportions [1]. 

This task is made even more difficult by the fact that, in drug discovery, data on the behavior of the compound 
in the ultimate target patient population, i.e. humans, is not available. This has led to the development of a 
plethora of in silico, in vitro, and in vivo animal models from which we can (hopefully) infer the likely in vivo 
efficacy, disposition and safety of a compound in humans. These include models for the prediction and 
measurement of potency and selectivity against molecular targets or off-targets; absorption, distribution, 
metabolism and elimination (ADME) properties; cell-based measurements of pharmacological activity and 
toxicity; and animal models of pharmacology, pharmacokinetics and toxicity. The cost and throughput of these 
techniques vary, from in silico methods which typically have the lowest cost and highest throughput, through 
in vitro and cell-based assays to lengthy and expensive in vivo studies, the use of which we would also like to 
minimize for ethical reasons. Therefore, drug discovery is a process of simultaneously optimizing all of these 
factors as compounds are designed, synthesized and progressed through a cascade of assays to accumulate 
data. 

This balancing act is difficult to achieve through a purely intellectual process. Psychologists have repeatedly 
demonstrated that people are very poor at making decisions based on complex and uncertain data when there 
is a lot at stake, such as in drug discovery. Several biases in decision-making (described as cognitive biases) 
have been identified that can detrimentally affect efficiency and productivity in drug discovery. A detailed 
discussion of some of these, with examples, may be found in [2]; however two illustrative examples are:  

 Confirmation bias:  The tendency to seek data that confirms a pre-formed hypothesis, rather than 
perform experiments designed to yield results to challenge the hypothesis. This can lead to a 
premature focus on a small range of options, which may lead to missed opportunities or late stage 
failures of compounds that have been progressed too far in the search for the one piece of data that 
would prove the point. 

 Excess focus on certainty: The tendency to seek additional data to be ‘absolutely certain’ of a critical 
factor, even when this data adds little value at a high cost. Often a more significant increase in the 
confidence around a slightly less important factor may have a greater effect on the overall chance of 
success. This can lead to inefficient use of resources when considering multiple property 
requirements and to late stage, expensive failures. 

The historical evidence regarding the attrition and productivity of pharmaceutical research and development 
supports this observation. The increasing complexity and volume of data being generated in drug discovery has 
not improved success rates in development – 11% in 2000  [3] versus 12% in 2010 [1] – while the cost per 
marketed drug has continued to escalate – from an estimated fully capitalized cost of $802M in 2001 [4] to 
$1,778M in 2010 [1] – and productivity, as measured by the number of registered new chemical entities, has 
fallen [5]. There are a wide range of theories regarding the underlying cause of these effects, but it is safe to 
conclude that generating additional, early-stage data has not resulted in the improvements anticipated in the 
outcomes. 

Fortunately, we may learn from other fields that face the same need to balance many factors in the design of a 
successful solution. These fields range from engineering disciplines, such as aerospace or automotive design, 
to economics. The resulting methods are commonly described under the broad term “Multi-parameter 
Optimization” (MPO) or sometimes also “Multi-dimensional Optimization” (MDO) or “Multi-objective 
Optimization” (MOOP). For convenience, we will use the term MPO to describe all of the methods in this 
review. 



 

 

There is a significant difference between applications of MPO methods to drug discovery and other fields, in 
particular engineering. This relates to the quality of the data available on the potential designs or prototypes 
from which a selection must be made. In an engineering discipline, characteristics may commonly be 
measured to accuracies within parts per million or predicted computationally to within a fraction of a percent. 
This may be contrasted with drug discovery where measured properties, such as IC50 or Ki values, may have an 
experimental variability of a factor of two, while predictions may have statistical uncertainties of an order of 
magnitude. This dramatically increases the challenge because, even if an ideal compound exists among the 
available options, we cannot expect to identify it with absolute confidence, thus running the risk of missing 
opportunities for high quality drugs [6]. 

In our research into the requirements for an ideal MPO method for drug discovery, we identified the following 
factors that should be taken into account: 

 Interpretability:  The property criteria and their impact on compound priority should be easy to 
understand. A ‘black box’ method that does not provide an easy way to understand why a compound 
has been classified in a given way is likely to be discounted. Furthermore, a ‘black box’ does not 
provide any guidance on the way one should go about making improvements in order to increase the 
chance of success.  

 Flexibility: Each project will have a different set of property criteria depending on the therapeutic 
objectives of the project, intended route of administration and competitive conditions in the market. 
The project team should be able to define appropriate criteria based on their experience or historical 
evidence. 

 Weighting: The project team should be able to assign different weights to each property criterion, as 
different criteria will have different degrees of importance to the outcome of the project. For example 
identifying a compound that is potent against the intended target is critical, while other properties 
will be less important, particularly early in a project when there is an opportunity for redesign to 
overcome liabilities. 

 Uncertainty: It is important to avoid rejecting potentially valuable compounds based on a property 
value that fails to meet a criterion if that value has a high level of uncertainty. The opportunity cost of 
incorrectly rejecting a good compound may be very high, particularly when the range of alternative 
options is limited. 

Coincidentally, it seems that the development of a suitable MPO approach for drug discovery is itself an MPO 
problem! 

One common question is, “Can’t this be easily solved by visualization of the data?” While visualization is 
necessary to understand and communicate results, it is not sufficient to allow conclusions to be easily drawn, 
given the complexity of the data at hand. One common approach is to plot multi-dimensional data, for 
example on a three dimensional graph with additional parameters shown by the colors and sizes of the points. 
An alternative is a ‘traffic light’ view where the properties of each compound are shown in a table and colored 
according to whether they ‘pass’ (green),  ‘fail’ (red) or are ‘close’ (yellow) to the relevant criterion. However, 
even with only five-dimensional data, it is difficult to confidently draw a conclusion from these visualizations 
even before we consider the relative importance of each property or the uncertainty in the data. An MPO 
method helps a project team to define a set of criteria and use this pro-actively to guide their decisions to 
quickly target high quality compounds [7]. 

In this review, we will explore a range of different MPO approaches that have been applied to drug discovery 
and compare their strengths and weaknesses relative to the requirements described above. The methods that 
we will discuss in order of increasing sophistication, include ‘rules-of-thumb’ that provide chemists with 
guidelines for compound characteristics,  simple pass/fail filters, Pareto optimization, desirability functions and 
probabilistic scoring, which brings together all of the requirements discussed above. We will also consider the 
role of chemical diversity to mitigate risk when selecting compounds for further investigation. Finally, we will 
illustrate some of the methods using examples taken from the literature before drawing our conclusions. 

  



 

 

Rules of Thumb 

Perhaps the most common approach used to consider the quality of compounds relative to criteria beyond 
potency  are ‘rules of thumb’ that provide guidelines regarding desirable compound characteristics. The best 
known is undoubtedly Lipinski’s Rule of Five (RoF) [8], which proposes criteria for four basic characteristics that 
Lipinski identified as being satisfied by the majority of orally absorbed compounds, namely: 

 Molecular Weight (MW) < 500 

 Logarithm of the octanol:water partition coefficient (logP) < 5 

 Number of Hydrogen Bond Donors (HBD) < 5 

 Number of Hydrogen Bond Acceptors (HBA) < 10 

Subsequently, several other rules have been proposed, for example Veber et al. [9] identified that most of the 
1100 compounds they studied with oral bioavailability of greater than 20% in rats had less than 10 rotatable 
bonds and a Polar Surface Area (PSA) of less than 140 Å

2
. However, Lu et al. [10] repeated this study with a set 

of 434 compounds and showed that the criteria depended on the method used for calculation, providing one 
illustration of the need for flexibility in the criteria depending on the source of data. 

Johnson et al. identified rules based on MW and the logarithm of the octanol:buffer  partition coefficient at 
pH7.4 (logD) to achieve permeability and metabolic stability [11]. In this case, rather than expressing these 
rules as criteria for the individual characteristics, Johnson et al. identified correlations that led them to express 
the rules in terms of a ‘golden triangle’  that defines an optimal region in (MW,logD) space in which a 
compound should lie (illustrated in Figure 1). 

Other rules, involving parameters such as the fraction of carbons which are sp3 hybridized [12] and the 
number of aromatic rings [13] have been proposed as measures of developability or likelihood of clinical 
success. Furthermore, Hughes et al. [14] studied the relationship between physicochemical properties and 
adverse events observed in in vivo toleration studies. They concluded that compounds with both calculated 
logP (clogP) > 3 and topological polar surface area (TPSA) < 75 Å

2
 had a significantly increased safety risk.  

The undoubted popularity of these rules derives from their simplicity and interpretability, the first 
requirement for a good MPO method. It is very easy to calculate these characteristics and quickly check if a 
compound obeys these rules. Similarly it is easy to understand how to modify a compound that fails to meet 
these rules in order to improve its chance of success; it is clear how MW, HBD or HBA could be reduced and 
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Figure 1. An illustration of the “Golden Triangle” [11] proposed by Johnson et al. Compounds 
within the shaded region in (MW, logD) space were found to have a higher chance of achieving 
better outcomes for permeability and metabolic stability. This is a convenient visual rule-of-
thumb for selecting compounds. 



 

 

chemists have a good understanding of the influence of chemical functionalities on lipophilicity. Therefore, 
these rules-of-thumb provide an easy approach to selecting compounds and guiding their redesign. 

The main disadvantage of these rules-of-thumb is also due to their simplicity. There may be a tendency to 
over-interpret simple rules and apply them with too much rigor. For example, does a compound with a MW of 
501 have a significantly worse chance of oral absorption than one with MW of 500? Indeed, Lipinski’s original 
paper [8] suggested that two or more failures against the RoF criteria were required to significantly decrease 
the chance of oral absorption, so the rules were not intended to be applied individually. 

These rules are derived from a review of historically successful drugs and are often treated as absolute rules 
that define ‘drug likeness.’ However, compounds for different therapeutic indications or routes of 
administration may require different characteristics or be more tolerant to violations of these rules. For 
example, there has been a tendency for the RoF to be considered as a definition of the conditions for ‘drug 
likeness’ when it is only based on analysis of the requirements for orally absorbed drugs. Drugs intended for 
topical, IV, inhaled or other routes of administration can violate some or all of the rules without a significant 
impact on their chance of success [15]. Therefore, the criteria and weight given to each of these rules-of-
thumb should be defined or applied flexibly according to the therapeutic objectives of a project. 
Unfortunately, this is not a straightforward exercise, as careful statistical analysis of a large number of 
compounds is required to identify statistically significant criteria. 

The majority of the characteristics used in these rules-of-thumb do not have any underlying uncertainty, as 
they are simple values calculated from the molecular structure. The principal exception to this is lipophilicity 
(logP or logD) which, if calculated, typically has an uncertainty (root-mean-square-error) of at least 0.5 log 
units. Therefore, care should be taken when drawing conclusions regarding compounds close to the criterion 
for lipophilicity.  

Finally, we should consider the confidence in the ‘prediction’ by a rule-of-thumb. As an illustrative example, 
we applied the RoF to a set of 1191 marketed drugs labeled according to whether they have been approved 
for oral administration and the results are shown in Table 1. Although, one should be careful not to over 
interpret these results, we can see that passing the RoF is not a guarantee of finding an orally available 
compound. This is not surprising, as the RoF was derived from observations of absorption and other factors 
such as first pass metabolism can limit oral bioavailability. However, the specificity of the RoF is also low (21%), 
as more non-orally administered compounds pass the RoF than fail and a significant proportion of compounds 
that fail the RoF are orally administered. 

 

Table 1. The results of applying Lipinski’s Rule of Five to 1191 marketed drugs labeled as oral or non-oral 
according to their approved route of administration. 

 RoF result 

 Pass  

(1 RoF Failure) 

Fail 
(>1 RoF Failure) 

Oral 709 59 

Non-oral 333 90 

 

In summary, rules-of-thumb can provide very convenient and easily applied guidelines for the selection of 
compounds with a greater chance of yielding successful drugs, if used in the appropriate context. However, 
one should be careful about being overly rigid regarding their application as this could lead to missed 
opportunities. 

  



 

 

Filtering 

Another simple approach to applying multiple criteria to the selection of compounds is sequential filtering. In 
this process the compounds are compared to series of criteria; those that fail to meet a criterion are discarded 
while those that meet the criterion are progressed for comparison against the next criterion in the sequence. 
The hope is that one or more ‘ideal’ compounds will emerge from the sequence of filters, having passed all of 
the criteria. Filtering offers the benefit that interpretation is straightforward, because if a compound fails one 
or more criteria this clearly indicates the focus for improving the compound. 

The set of criteria against which compounds are compared can be based on any relevant properties, whether 
calculated or experimental. This offers the flexibility that a drug discovery project may choose criteria that are 
tailored to the project objectives, based on the experience of the project team or historical data for successful 
compounds for the intended therapeutic indication. These criteria are sometimes referred to as a target 
product profile (TPP) and an illustrative example of such a profile for identification of a lead compound for an 
orally dosed compound is shown in Table 2. Early in a project, for example when choosing a screening library 
for high throughput screening, it is also common to apply the criteria indicated by one of more of the rules-of-
thumb discussed above as sequential filters. 

 

Table 2. An example of a target product profile for selection of a lead compound intended for oral 
administration. 

Property Criterion 

Pharmacology 

Potency against target (Ki) <100 nM 

Selectivity against related off-targets >100  

Physicochemical 

LogP <4 

Solubility >100 M 

MW <450 Da 

ADME 

Caco-2* permeability (Papp) >1010
-6

 cm/s 

Intrinsic Clearance in Human Liver Microsomes (Clint) <25 L/min/mg protein 

Absence of P-glycoprotein transport (Caco2 BA:AB) <3 

Safety 

Avoid Cytochrome P450-mediated drug-drug 
interactions (Ki for CYP3A4, CYP2C9, CYP2D6, CYP1A2) 

>1 M 

Avoid interaction with hERG potassium ion channel 
(IC50) 

>10 M 

Cytotoxicity in HepG2† cells (LD50) >1 mM 

*Human epithelial colorectal adenocarcinoma cell line [16]  
†Hepatocellular carcinoma cell line [17] 

One challenge of filtering is that it is common for no compounds to emerge from the end of the sequence; 
there are several possible reasons for this: 

 There are often conflicts between the property criteria; improving one property often leads to an 
adverse change in another. In these situations, the relative importance of each criterion should be 
taken into account as this defines acceptable trade-offs against conflicting properties. 

 Simple yes/no criteria may be too strict; For example, if a compound meets all of the criteria in the 
TPP, except that it has a logP of 5.1 versus a criterion of <5, does it make sense to reject it? 

 There may have been a mis-measurement or mis-prediction; one or more compounds may have been 
incorrectly rejected due to the experimental variability or statistical error in a prediction. 

The last of these is probably the biggest concern about filtering because, as we discussed above, there is 
significant uncertainty in almost all of the data which is available in early drug discovery. If we consider a 



 

 

simple illustrative example in which we have 10 filters that are each 90% accurate in passing/failing a 
compound, the probability of an ideal compound emerging, even if it was present in the set being filtered, is 
only 35% (p = 0.9

10
 assuming independence of the error in each filter). Therefore, even in this optimistic case, 

sequential filtering is more likely to discard an ideal compound than accept it. Furthermore, there is a 
significant chance of incorrectly passing a poor compound; in this example, if a compound should correctly fail 
only one of the criteria, the probability of it being incorrectly accepted is 4%. Given that there are typically 
many more poor compounds than good, this means that any ideal compound that is fortunate enough to be 
correctly passed by all of the filters is likely to be swamped by poor compounds incorrectly accepted. 

Therefore, despite the simplicity and easy interpretation of filtering, it should be treated with caution. The 
process accumulates error without that being transparent, running the risk of rejecting good compounds and 
missing opportunities to find a high quality drug.  

Calculated Metrics 

Rather than defining criteria for multiple, individual properties these may be combined to calculate a single 
metric that can be optimized to guide selection or design. One of the earliest and most commonly applied 
metrics is the Ligand Efficiency (LE) proposed by Hopkins et al. [18], with the goal of mitigating the tendency to 
focus too heavily on the optimization of potency at the cost of other necessary properties. LE was derived from 
the observation that smaller compounds tend to have better physicochemical and ADME properties than large 
compounds. Therefore, given two equally potent compounds it is preferable to choose the smaller. Or, 
alternatively, increasing potency without significantly increasing compound size is desirable. LE is defined as: 

    
  

  
, 

where  G is the free energy of binding and NH is the number of heavy (i.e. non-Hydrogen) atoms in the 
compound. In more common units, this may be expressed as: 

    
        

  
 

         

  
, 

where pIC50 = -log(IC50) and the IC50 is expressed in molar concentration. 

The use of the LE metric is particularly popular in fragment-based drug design [19], where the starting point is 
typically one or more small fragments with low binding affinity and new compounds are designed by growing 
or linking these fragments to identify a larger compound with sufficient potency. Although the initial fragments 
bind only weakly, they have a high LE due to their small size and the optimization process may be guided by 
increasing the potency while maintaining a high LE. 

The LE metric inspired other calculated optimization metrics, for example Ligand Lipophilicity Efficiency (LLE) 
[20], also known as Lipophilic Efficiency (LipE): 

                 

where a calculated value of logP is often used. This was motivated by the desire to maximize potency while 
maintaining as low a lipophilicity as possible, due to the association between high lipophilicity and several 
issues including poor solubility, membrane permeation and metabolic stability, lack of selectivity and a higher 
risk of non-specific toxicity [21] [22]. 

The range of efficiency metrics has been further extended to include percent efficiency index (PEI), defined as 
the percent inhibition (as a fraction between 0 and 1) divided by MW in kDa; binding efficiency index (BEI), 
defined as pIC50 divided by MW in kDa; and surface efficiency index (SEI), defined as pIC50 divided by PSA in 
100s of Å. All of these combine a measure of potency related to another property representing the ‘drug-
likeness’ of the compound and are reviewed in detail in [23]. More complex derivatives of these efficiency 
indexes have also been proposed including ligand efficiency-dependent lipophilicity (LEDL), defined as logP 
divided by LE [24] and ‘fit quality’ [25]. 

These calculated metrics have the advantage that they are simple to apply, as only a single value must be 
monitored during optimization. They are also easy to interpret – Increase potency while minimizing the 
increase in compound size or lipophilicity – although this ease of interpretation may be sacrificed somewhat by 
the more complex efficiency indexes such as LEDL. 



 

 

In many cases rules-of-thumb have been developed for selection of high quality compounds using these 
metrics. For example, it has been proposed that a LLE of 6 or higher is preferable, corresponding to a potency 
of better than 10 nM with a logP of 2. Again these provide useful guidelines when applied in an appropriate 
context, but the same caveats apply here as to the rules-of-thumb discussed above, in particular: 

 Potency and logP values have significant uncertainty, particularly when predicted, yet it is rare to see 
the uncertainties propagated through the calculation of the efficiency metric to consider the 
confidence with which compounds may be chosen based on these metrics. 

 As noted above, increasing compound size, MW and logP significantly increases the chance of 
encountering issues with poor physicochemical, ADME and toxicity. However, the correlation with 
these properties is not perfect, so it may be inappropriate to make selections based too strictly on 
these metrics, particularly when options are limited. 

 These rules are not universal and are typically based on identification of orally administered drugs, so 
the project’s therapeutic objective should be considered carefully before choosing a criterion. 

It is noteworthy that there is a close relationship between the optimization based on these metrics and a 
recent trend to optimize compounds based on measurements of the thermodynamic parameters of binding 
using biophysical measurements [26]. This strategy suggests that it is better to increase binding affinity (or 

equivalently decrease the free energy  G, as strong binding is equivalent to a reduction in free energy) by 

introducing an interaction dominated by decreasing  the enthalpy of binding ( H) rather than one dominated 

by increasing entropy ( S) – note  G =  H - T S, where T is the temperature. Decreasing the binding free 
energy by reducing the enthalpy is achieved by forming a specific interaction with the target, for example a 
hydrogen bond with a residue in the binding pocket, which will typically improve the LE or LLE. The free energy 
can also be reduced by increasing the entropy and this can be achieved by displacing coordinated water 
molecules from the binding pocket into bulk solvent, for example by adding a bulky lipophilic group to occupy 
the binding pocket. However, this is often detrimental in the long-run, as such a non-specific interaction will 
increase the chance of off-target binding or non-specific toxicity and this is reflected by a decrease in the LE or 
LLE [27].  

Pareto Optimization 

The concept known as Pareto optimality was proposed by an Italian economist Vilfredo Pareto in the early 20
th

 
Century [28]. He suggested that, when considering multiple parameters, there may not be a single best 
combination of parameters, but rather a family of solutions that each represents a different, optimal 
combination. More specifically, a solution to a multi-parameter optimization problem is considered to be a 
Pareto optimum if there is no other solution that is better in all of the parameters. 

To illustrate this, consider the two-parameter example, illustrated in Figure 2(a), of a hypothetical drug 
discovery project which wishes to achieve an optimal balance of potency and metabolic stability to achieve 
good in vivo exposure and hence efficacy. Ideally, the project would like to identify a compound with high 
potency (pIC50) and good stability in human liver microsomes (% remaining after incubation for 40 minutes). 
This ideal goal is represented by the top right corner of the plots in Figure 2. However, as this ideal may be 
difficult or impossible to achieve, the project would like to find a good balance between potency and 
metabolic stability. The points shown as solid points in Figure 2 represent compounds with different, Pareto 
optimal combinations of these two parameters. For example, the point labeled A has no points that have both 
better potency and better metabolic stability, i.e. there are no points to the right and above; such a point is 
described as ‘non-dominated’.  Contrast this with the point labeled B, which has a point, C, to the right and 
above representing a compound that is better in both parameters; B is ‘dominated’ by C. Note that the non-
dominated points define a boundary, known as the ‘Pareto front’ and each represents a candidate for further 
investigation to identify the best balance of potency and metabolic stability to achieve in vivo efficacy. 

The concept of Pareto optimality may be generalized to Pareto rank, whereby a point is ranked according to 
the number of points by which it is dominated, a rank-0 point is non-dominated, rank-1 is dominated by only a 
single point, etc. This allows compounds to be ranked according to how close they are to the optimum front. 

  



 

 

 

(a) 

 

(b) 

Figure 2. Plots illustrating the concept of Pareto optimality in which the ideal outcome corresponds to the top right 
corner of the plot, as indicated by the star: (a) shows a scatter plot of data for activity against the therapeutic target and 
stability in human liver microsomes for a set of 75 compounds. The solid points are Pareto optimal or ‘non-dominated’ 
points; for example, in the case of point A, there are no points with a higher value for both parameters. However, open 
circles are not Pareto optimal; for example point B is ‘dominated’ by point C. (b) shows the same data for which the 
uncertainty (1 standard deviation) has been shown as error bars on each point. From this it is clear that while two points 
may be confidently identified as Pareto optimal (solid circles) there are many points in the region indicated by the 
ellipse, which may not be confidently identified as Pareto optimal or otherwise. 
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Pareto optimization has a strong benefit of offering flexibility if the appropriate weighting for each property is 
not known a priori or when it is useful to explore a range of different potential solutions. It is also possible to 
apply a weighting toward one or more properties by selecting compounds from only a portion of the Pareto 
front. Furthermore, interpretation is quite straightforward, at least for small numbers of parameters, as these 
solutions can be easily visualized. 

However, when dealing with a large number of parameters (e.g. 5 or more) to be optimized, Pareto 
optimization becomes less useful because the number of solutions on the Pareto front grows exponentially 
with the number of parameters. This leads to an overwhelming number of ‘optimal’ solutions making it 
impossible to evaluate them all and choose between them.  Unfortunately, in the drug discovery process, it is 
common to deal with many more than 5 parameters. One approach to addressing this is to combine multiple 
individual parameters into a small number of ‘scores’ representing different factors that are then subject to 
Pareto optimization. For example, all of the parameters relating to ADME properties may be combined into a 
single ADME score and the trade-off explored with potency using Pareto optimization [29]. The integration of 
individual properties into a single score may be achieved using a method such as desirability functions or 
probabilistic scoring, as described below. 

A further limitation of the Pareto optimization approach is that it does not explicitly take the uncertainty of the 
underlying data into consideration.. For example, Figure 2(b) shows the same data for the compounds in 
Figure 2(a) with the uncertainty shown by error bars for each point. From this it can be seen that some 
compounds can be confidently identified as Pareto optimal; however in many cases it cannot be confidently 
determined which compounds are Pareto optimal, suggesting a number of compounds that are not on the 
explicit Pareto front are worthy of consideration.  

Therefore, for a small number of parameters to be optimized, Pareto optimization provides an excellent 
approach to investigate the best trade-off between the competing factors. However, for data with high 
dimensionality or uncertainty, the number of potential solutions becomes too large for easy consideration and 
the Pareto approach must be combined with another method to reduce the complexity of the data. 

Desirability Functions 

The desirability function was first proposed by Harrington [30] in 1965 as an approach for combining multiple 
responses in a single optimization equation. A desirability function maps the value of a property onto a score 
in the range from zero to one that represents how desirable a compound with this property value would be. If 
the property of a compound lies in the ideal range, it will be given a score of 1.0 and if the property is such that 
the compound would be absolutely rejected it would be given a score of 0.0. Scores between zero and one 
represent increasing levels of desirability. 

A simple pass/fail filter may be defined easily using a desirability function that has a value of 1.0 on the 
desirable side of the criterion value and a value of 0.0 on the undesirable side, as illustrated in Figure 3(a). 
However, desirability functions provide great flexibility in defining the criteria and importance of a property for 
the identification of high quality compounds. A less important property would receive a score greater than 
zero on the undesirable side, indicating that this ‘failure’ would not be cause for rejecting the compound 
absolutely, as illustrated in Figure 3(b). The importance of the property to determining the quality of a 
compound is reflected by the minimum desirability score it can achieve; a critical property is one for which an 
unacceptable value would lead to the outright rejection of a compound.  

Other shapes of function can define an optimal range (Figure 3(c)), a single optimal value (Figure 3(d)) or a 
trend across a range of property values from absolute rejection to ideal (Figure 3(e)). The functions in Figure 
3(a-e) are all examples of linear forms of a class of functions called Derringer desirability functions [31] which 
also include non-linear variants that can reflect the speed at which the desirability decreases as the property 
moves away from the ideal value (an example is shown in Figure 3(f)). 
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(e) (f) 

Figure 3. Example desirability functions. The functions shown by the bold lines in (a) through (e) are examples of linear 
desirability functions: (a) is a threshold function representing a simple filter, as property values that do not achieve the 
criterion of  >5 have a desirability score of zero; (b) is a threshold function with less importance, as property values that 
do not achieve the criterion of >5 are less desirable, but will not be rejected outright; (c) defines an ideal property range 
of 4-6 with values exceeding the upper limit being less desirable than those less than the lower limit; (d) defines an ideal 
value of 5 with linearly decreasing desirability above and below this and (e) defines an ideal property criterion of >8 with 
linearly increasing desirability above a value of 2. The desirability function in (f) is an example of a nonlinear Derringer 
function with desirability d for property value Y defined by: 
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A single desirability function only provides a way to assess the quality of a compound according to one 
property. However, by mapping all properties onto a desirability scale between zero and one, the individual 
desirability scores due to multiple properties may be easily combined, even if the properties have different 
scales or units of measurement. Multiple desirability scores corresponding to different properties can be 
combined into a ‘desirability index’, which is a measure of the overall quality of a compound. 

There are two common approaches to defining a desirability index: an additive approach combines the 
individual desirability scores by taking the average, 

   
                      

 
, 

where D is the overall desirability index, di(Yi) is the desirability score for property Yi and n is the number of 
properties. Alternatively, a multiplicative approach takes the geometric mean of the individual desirability 
scores; 

                          
   . 

A disadvantage of an additive approach is that if a large number of properties are being combined in an 
assessment of the overall desirability a very low desirability for a single property will only have a small impact 
on the desirability. However, if a compound has an unacceptable value of a critical property the compound 

should be rejected, e.g. a compound with 100 M IC50 is not of interest even if it has ideal ADME properties. 
This behavior is captured by a multiplicative definition of the desirability index. 

As the desirability index is calculated from the individual desirability scores corresponding to each property, 
the impact of each property on the overall quality of a compound can be easily identified. This provides for 
easy interpretation of the overall result and quickly identifies the most important issues that should be 
addressed in order to optimize a compound to improve its overall quality. 

A limitation of the desirability function approach is that it assumes an a priori knowledge of the trade-offs 
between the different factors contributing to the success of a compound against the therapeutic goal of a 
project. This relies on the expert domain knowledge of the project team, which introduces a degree of 
subjectivity into the prioritization of criteria and hence compounds. However, this approach also provides a 
straightforward way to test the effect of this subjectivity, by exploring the impact of changes in the desirability 
functions on the selection of compounds. Thus, it can help to challenge the decision-making process and focus 
attention on critical experiments, e.g. in vivo studies, which will help to identify the most appropriate profile to 
select high quality compounds with greater accuracy [32]. 

Therefore, desirability functions provide a flexible method to define an ideal property profile and assign a 
weight for each property criterion to prioritize compounds in an easily interpretable manner. Defining ‘soft’ 
boundaries to a desirability function, rather than a hard cut-off helps to avoid rejection of compounds based 
on an uncertain property value close to a criterion boundary. However, the standard desirability function 
approach does not explicitly consider the uncertainty in the underlying data and in the next section we will 
describe an extension of this method that adds the ability to assess the confidence with which compounds 
may be distinguished. 

Probabilistic Scoring 

The probabilistic scoring approach [33] [34] builds on desirability functions by explicitly incorporating the 
uncertainty of the underlying data to provide confidence and objectivity in decisions regarding compound 
selection. 

The Importance of Uncertainty 
In order to illustrate the importance of uncertainty in selection of compounds, consider the examples shown in 
Figure 4. Figure 4(a) shows a desirability function corresponding to a simple filter, which will accept 
compounds with values of property value less than 5 and reject those with property value greater than this. 
Compounds A, B, and C have property values 4, 6 and 8 respectively, therefore B and C would receive a 
desirability score of 0.0 and be rejected, while compound A would receive a desirability score of 1.0 and be 
accepted. However, if the property values are uncertain, as illustrated by Gaussian probability distributions, 

  



 

 

 

(a) 

 

(b) 

Figure 4. Illustrations of the importance of uncertainty when selecting compounds. Both figures show a desirability 
function (bold line) corresponding to a simple filter with a criterion of <4. The dashed vertical lines indicate values of 
property Y for compounds labeled A through E. The uncertainties in these property values are illustrated by the grey bell 
curves (Gaussian distributions) centered on each compound’s property value. In (a) if we were to ignore the 
uncertainties in the property values, compound A would be accepted and B and C would be rejected. However, 
considering the uncertainties, we can see that, while the probability of compound C achieving the criterion is negligible, 
there is a significant probability, shown by the vertically hatched area, that compound B will meet the criterion and 
there is an equal probability, shown by the diagonally hatched area, that compound A will not meet the criterion. In (b) 
we can see that the values for both compounds D and E fail to meet the criterion. However, taking the uncertainties into 
account we can see that, even though the value for D is closer to the criterion than E, the probability of compound E 
meeting the criterion (the vertically hatched area) is actually greater than that for compound D (the diagonally hatched 
area). 
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we can see that this decision should not be so clear-cut.  While we can see that compound C is very unlikely to 
meet the criterion, there is a significant probability that compound B will achieve the required criterion, while 
there also a significant probability that compound A will not achieve the criterion. Therefore, a more 
appropriate interpretation of this data is that C can be rejected with confidence, but compounds A and B 
cannot be confidently distinguished. Better data or another criterion would be needed to select between A 
and B. 

The example shown in Figure 4(b) illustrates another subtle effect of uncertainty. The compounds D and E both 
have property values on the undesirable side of the criterion and would receive a desirability score of 0.0. 
However, if these were the only two options and one must be chosen for further testing, it may be tempting to 
select compound D, as it is closer to the criterion value. However, it should be remember that the same 
properties can be measured to different levels of accuracy and so the uncertainties in the data, even for a 
single property, will not necessarily be the same. As such, if we consider the uncertainties in these values, 
again illustrated as Gaussian distributions, we can see that the value of compound E is less certain and hence 
the probability of compound E achieving an acceptable value is higher. Therefore, it would be more 
appropriate to select compound E; it is better to select a compound we are uncertain about, instead of a 
compound we are confident will fail. Of course, after selecting compound E a more accurate value for the 
property should be determined as a priority.  

Combining Desirability with Uncertainty 
Probabilistic scoring [33] [34] allows the project to define the property profile required for a successful 
compound (a ‘scoring profile’) using desirability functions to provide flexibility in defining the individual 
property criteria and their importance to the overall objective of the project. The question of desirability is 
separated from the confidence in the property values produced by an experiment or prediction; the 
desirability can be defined under the assumption that the data on a compound’s properties could be 
determined perfectly. An example of such a scoring profile is shown in Figure 5, which combines experimental 
potency with predicted ADMET properties. 

The data for each compound is then assessed against the scoring profile, to calculate a probabilistic score for 
each compound, which represents the most likely desirability score for the compound, taking into account the 
uncertainty in each data point. The uncertainty in the overall score provides valuable additional information 
that helps to make decisions with confidence; it indicates clearly when compounds may be confidently 
distinguished given the uncertainty in the underlying data. 

The uncertainty in the data may derive from variability in an experimental assay or the statistical error in a 
property prediction and may vary from compound to compound. For example, when multiple experimental 
replicates have been performed, the best estimate of the property value and uncertainty are the mean and 
standard error in the mean of the individual measurements, which will be different for each compound. In 
cases where data is missing for a compound, e.g. when an assay has not yet been performed, this can also be 
treated rigorously, as a missing piece of data is simply a data point with a very high uncertainty. Therefore, if a 
compound meets all criteria with high confidence, except for an important property for which a data point is 
missing, the result would be a moderate score, with very high uncertainty, i.e. if the missing data point were 
measured and the result was good, this would be an ideal compound, but if the measured value were poor, 

Figure 5. An example of a scoring profile. For each property the ideal outcome (desired value) and 
importance is indicated. Underlying each property criterion is a desirability function as illustrated in this 
case for the pKi against the 5HT1a target. The desirability function (bold line) is superimposed on a histogram 
showing the distribution of the underlying data. 



 

 

the compound would not be acceptable. Whereas, if a compound fails multiple criteria with high confidence 
but has a missing data point, the score will be low with low uncertainty, as the missing data point is 
unimportant; a good result for one property would not ‘rescue’ a poor compound. 

One illustration of the output is shown in Figure 6, which shows the calculated probabilistic scores for a set of 
compounds against the profile shown in Figure 5. From this it is clear that, although the first compound 
achieves the highest score, the uncertainty in the score for this compound means that it cannot be confidently 
selected over several of the top-scoring compounds; the error bars on the scores overlap significantly, 
suggesting that more precise data or another criterion will be necessary to choose between these compounds. 
Conversely, we can see that approximately half of the compounds may be rejected with confidence, as the 
error bars for these compounds do not overlap with those of the top-scoring compounds, indicating that the 
chance of them being of similar quality to the best compounds in the set is negligible. 

Interpretation of probabilistic scores is also straightforward, as the contribution of each property to the overall 
score may be identified, giving clear guidance on the focus of further optimization efforts. One approach to 
visualizing this is a histogram showing the impact of each property on a compound’s score, as illustrated inset 
in Figure 6. The height of each bar corresponds to the contribution of the property to the score; a very low bar 
indicates a property that fails to meet the criterion for an important property with high confidence, while a 
high bar indicates a good result for a property with high confidence. Other ways this information could be 
displayed include a heat map or radar plot, as illustrated in Figure 7.  

As probabilistic scoring is based on the foundation of desirability functions, the same limitation applies, namely 
that an a priori knowledge of an appropriate property profile is assumed. Furthermore, an understanding of 
the uncertainty in the underlying property data, whether due to statistical error in predictions or experimental 
variability, is required. Ideally, this should be determined as part of the validation of a predictive model or 
assay. Where multiple experimental replicates are available, the uncertainty can be estimated for each 
compound as the standard error in the mean of the individual measurements. However, even when a 
quantitative measure of the uncertainty is not available, it may still be valuable to include an estimate of the 
confidence based on the experience of the experimentalist, who will often have a feel for how much they 
‘trust’ the data. In this way, a scientist without this domain knowledge can take into account the expert’s 
interpretation of the data and avoid giving too much weight to differences in property values that are not 
significant. 

Figure 6. An example output from probabilistic scoring for 30 compounds. The compounds are ordered from left to right 
along the x-axis in order of their score and overall score for each compound is plotted on the y-axis. The overall 
uncertainty in each score (1 standard deviation), due to the uncertainty in the underlying data, is shown by error bars 
around the corresponding point. The impact of each individual property on the overall score can be interpreted and an 
example histogram visualizing this for a single compound is shown inset. High bars indicate properties that achieve the 
ideal outcome with high probability while low bars indicate properties that have a significant negative impact on the 
score. The colors of the bars correspond to the key in the profile shown in Figure 5. 



 

 

Therefore, this approach brings together the requirements outlined in the Introduction to allow flexibility in 
setting property criteria for each project and the weight given to each individual property criterion, while 
taking the uncertainty in the available data into account and maintaining easy interpretation of the results.  

Multi-Objective Evolutionary Algorithms 

In some cases, the number of possibilities to prioritize is too high to simply enumerate and rank them all using 
one of the methods described above. Searching ‘chemical space’ is particularly challenging, as it is not a 
continuous space, i.e. there are only certain discrete changes that can be made to a compound. Nor are the 
responses of biological properties to chemical structure smooth; there are numerous anecdotes of the ‘magic 
methyl’ whereby a small change in the right place on a compound dramatically changes its properties [35]. 
These factors, combined with the enormous size of the potential search space – the number of possible ‘drug-
like’ compounds has been estimated to be ~10

60
 [36] – means that a computational algorithm must be used to 

explore the ‘space’ of possibilities in search of high quality solutions. 

A popular class of algorithms for searching large, complex spaces are ‘evolutionary algorithms’ (EAs) [37], 
which are motivated by the theory of evolution. These algorithms ‘evolve’ a population of potential solutions, 
‘combining’ and randomly ‘mutating’ their features before selecting the ‘fittest’ as the basis for the 
subsequent ‘generation’. These stochastic methods cannot be guaranteed to find the optimal solution, but 
used appropriately, can find good solutions with a high probability. 

De novo design algorithms generate new compound structures, often using an EA approach. The output of 
such an algorithm can then be prioritized using an MPO approach to find the ‘fittest’, i.e. the highest scoring, 
as the basis for the next generation. In an evolutionary approach, new structures may be generated by 
‘mutating’ features of a compound (e.g. changing bond orders, breaking or forming rings, introducing hetero-
atoms or substituting new atoms) or combining fragments from multiple compounds to create a new, hybrid 
compound [38]. An alternative method is to use ‘medicinal chemistry rules’ for modifying compounds, taken 
from the experience of medicinal chemists, to define compound transformations that may be applied 
iteratively to create new ‘generations’ of compounds [39]. In these ways, de novo design, coupled with MPO, 
can be used as a directed search for high quality compounds that are likely to meet the criteria for a project 
[40] [41] and suggest new structures that may be interesting for further investigation. One of the limitations of 
de novo design is the potential to propose unstable, unfeasible or synthetically intractable chemical structures. 
One of the advantages of the transformation rule based methods is that they tend to produce more acceptable 
structures, due to the fact that the transformations are based on historical precedents However, 

Figure 7. An example radar plot visualization for probabilistic scores for a set of compounds. Each radial axis represents a 
single property in the scoring profile shown in Figure 5. The grey region shows the ideal range for each property and each 
compound is illustrated by a line joining the axes, such that the intercept indicates the value of the corresponding 
property. This can help to visualize the performance of the overall set relative to the ideal property profile and each 
individual compound relative to both the ideal profile and overall set. 



 

 

computational methods to estimate the synthetic tractability of compounds can help to discard irrelevant 
compounds generated by inappropriate mutations or combinations of structures [42].  

Another class of problems which often yields an unfeasibly large number of possibilities to sample exhaustively 
is the selection of a subset of compounds from a large (virtual) library. For example, even when only selecting 

10 compounds from a possible 100 there are 1.710
13

 different combinations. Of course, if there is a free 
choice of compounds to select, the obvious solution is simply to pick the highest scoring compounds. However, 
in some cases it may be necessary to restrict the selection of compounds to meet constraints for synthesis, e.g. 
a combinatorial selection to allow parallel synthesis or limit the number of reagents required. Even when a 
free choice is available, simply selecting the highest scoring compounds may not be the best approach, as the 
top scoring compounds may be very similar in terms of their chemical structure. In this case, it may be 
appropriate to temper a focus on score with an element of structural diversity to explore a range of different 
potential chemistries. Structural diversity is a property of a collection of compounds and individual compounds 
cannot be assigned a measure of their diversity. Therefore, a large number of potential selections must be 
explored in order to search for an appropriate degree of diversity. Fortunately, this library design problem is 
well suited for an EA approach as discussed in more detail in the following section. 

A survey of many algorithms for molecular optimization using computational MPO algorithms is available in 
reference [43] 

Library Design: Balancing Quality and Diversity 

As discussed above, when selecting sets of compounds from a larger library, it is often valuable to not focus 
exclusively on the ‘best’ compounds. As we have discussed, the available data is usually uncertain and closely 
related compounds are more likely to share a common cause of unpredictable failure at a later stage (e.g. a 
common mechanism of toxicity). Therefore, it is often useful to balance quality with an exploration of 
structural diversity to validate predicted hypotheses, mitigating risk by exploring potential backup series and 
gathering information on structure-activity relationships. 

There are many definitions of structural diversity that may be used in this context. The difference between 
pairs of compounds may be considered in terms of the two-dimensional structure (the graph of atoms and 
bonds), for example using fingerprints based on sub-structural keys or atom paths and a Tanimoto similarity 
index [44]. Alternatively, methods that take three-dimensional conformational or shape-based information 
may be used. There are also many ways to assess the diversity of a set of compounds, including the minimum 
or average difference between compounds in the set using one of the pair-wise difference measures, 
clustering of compounds into structurally similar groups or dividing a descriptor space into ‘cells’ and sampling 
compounds evenly from each cell. An excellent overview of methods for assessing the diversity of compounds 
and libraries is provided in [45] and the references therein.  

The problem of library design and selection maps neatly onto a class of EAs called Genetic Algorithms (GAs) 
[46]. In a GA, the characteristics of a member of the population of potential solutions is represented using a 
‘genetic code’ which can then be ‘mutated’ or ‘crossed’ with the genetic code of another member to create 
‘offspring’, mimicking the transfer of genetic material during reproduction. For selection of compounds, the 
genetic code can be a binary string in which the presence or absence of a compound or, in the case of a 
combinatorial library a reagent group, is encoded as a 1 or 0 respectively. Alternatively the genetic code can be 
represented as a list of integers representing the selected compounds or reagent groups from the available 
pool. A mutation corresponds to changing a 0 to a 1 or vice versa or changing one integer value to another. 
Crossing two members of the population involves splitting the codes, swapping a section of each and 
recombining the sections. In both cases, care must be taken to ensure that the appropriate number of 
compounds or reagents is selected in total. 

One example of such an approach is the MoSELECT algorithm published by Gillet et al. [47] which combines a 
genetic algorithm with Pareto optimization to evolve combinatorial library design strategies using the Multi-
objective Genetic Algorithm (MoGA) [48]. This approach explores different strategies for reagent selection 
and, in each generation, chooses the library designs as the basis for the next generation based on their Pareto 
rank. The Pareto rank is calculated for the properties of the library to be optimized, including diversity, cost of 
reagents, and measures of ‘drug-likeness’ such as MW, HBD and HBA. The algorithm evolves increasingly good 
approximations to the library designs that lie on the Pareto front and the result is a family of possible library 



 

 

designs that range from highly diverse to those focused on one of the property criteria and cover combinations 
between these extremes. As previously discussed, this has the advantage of providing a number of possible 
solutions for the project to explore, which is particularly useful if the best balance of diversity versus other 
quality criteria is not known a priori. However, the choice can become overwhelming, particularly if there are 
no simple post-hoc criteria with which to distinguish the different library designs. 

Another approach to balancing quality and diversity is to combine a measure of library diversity with a 
measure of quality into a single optimization metric. Most commonly, this is achieved by defining a fitness 
function as the weighted sum of diversity and functions of other properties of the selected set, allowing the 
user to choose an appropriate balance between quality and diversity, i.e. 

                          , 

where wd is the weight given to diversity, D is the diversity of the selected set,    is the weight given to 
property i and        is a function of the property value pi, for example the average of the values of a 
desirability function for the selected compounds. Typically, the weights are normalized such that they sum to 
one. This may be simplified further into a weighted sum of diversity and a score, for example a desirability 
index or probabilistic score, which combines the non-diversity quality metrics, i.e. 

         , 

where ws is the weight assigned to the score and S is the score for the selected set, e.g. the average score for 
the selected compounds. Maximization of such a two-component fitness function is equivalent to searching for 
the Pareto front along a single direction in the (D,S) space, as illustrated in Figure 8. Setting wd = 1 and ws = 0 
will search for the most diverse possible selection and the opposite values will search for the highest scoring 
selection. Examples of the results of this approach for free selection of compounds from a screening library are 
shown in Figure 9. In this example, a probabilistic score was used to assess the quality of the compounds 
against the project’s objectives and different weights were considered for score and diversity. From this, one 
can see that, given the uncertainties in the overall scores, it is possible to explore significant additional 
diversity without a statistically significant sacrifice in compound quality. A further example of this approach for 
combinatorial library design may be found in reference [33]. 
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Figure 8. Diagram illustrating the relationship between Pareto optimization of score versus diversity and optimization 
along a single direction defined by a fitness function corresponding to a weighted sum of score and diversity with 
weights ws and wd respectively. The Pareto front of optimal selections with different balances of score and diversity is 
indicated by the dashed line. The search directions corresponding to three different fitness functions are indicated by 
arrows annotated with the corresponding values of ws and wd. Searching along the direction ws=1, wd=0 will identify the 
highest scoring selection indicated by the black star; searching along the ws=0.5, wd=0.5 direction will yield a selection 
with an equal balance of score and diversity, as indicated by the grey star and searching along the ws=0, wd=1 direction 
will identify the most diverse selection indicated by the white star. 



 

 

  

ws=0.8, wd=0.2 

  

ws=0.5, wd=0.5 

  

ws=0.2, wd=0.8 
Figure 9. Three example selections corresponding to different balances of score and diversity from a library of 
compounds scored using probabilistic scoring. The plot on the left for each selection is a ‘chemical space’ plot illustrating 
the structural diversity of the library. These are plots of the first two principal components of the similarity space 
calculated using 2-dimensional, path-based fingerprints and a Tanimoto similarity index. On the right is a scoring plot for 
the compounds in the library, similar to that in Figure 6. The points are colored from high score (yellow) to low score 
(red) and the selected compounds are colored in light blue. From this we can see that the selection corresponding to 
ws=0.8, wd=0.2 focuses on the highest scoring compounds, but samples a relatively limited region of chemical space. For 
ws=0.5, wd=0.5 compounds with a broader range of scores (but still within the highest ~25% of scores) and a wider 
diversity are selected. Finally, for ws=0.2, wd=0.8 the selection results in sampling compounds across greater diversity 
and all but the lowest scores.  



 

 

The advantage of this approach is that, if a small number of possible trade-offs for quality versus diversity are  
considered interesting a priori, these may be efficiently explored under complete control by the user. 
However, if the most relevant trade-offs are not known, the Pareto optimization approach allows a more 
comprehensive exploration of the possibilities.  

Example Applications 

We have reviewed several methods for MPO in the context of drug discovery. In this section we will present 
illustrative examples of the application of desirability functions, Pareto optimization and probabilistic scoring 
to practical drug discovery challenges. 

Desirability Functions for MPO of Central Nervous System Drugs 
Wager et al. [49] presented the derivation of an MPO system, based on desirability functions, for the 
identification of compounds with a higher probability of success against a central nervous system (CNS) target.  
The authors focused on six physicochemical parameters: clogP, clogD, MW, TPSA, HBD and the pKa of the most 
basic center. Desirability functions were derived for these properties as shown in Figure 10. 

In this implementation, the desirability score for each property is summed to give a desirability index between 
0 and 6. The authors compared the desirability indexes for a set of 119 marketed drugs for CNS targets with 

108 Pfizer CNS candidates and found that 74% of the marketed set achieved a desirability score of  4 
compared with only 60% of the Pfizer candidates, a statistically significant difference. 

The authors also explored the relationship of the desirability index with key in vitro ADME and safety 
endpoints, specifically: membrane permeability (apparent permeability (Papp) measured in the Madin-Darby 
canine kidney (MDCK) cell line), P-glycoprotein (P-gp) efflux liability (measured in MDCK cells transfected with 
the MDR1 gene), metabolic stability in human liver microsomes (HLM) (unbound intrinsic clearance), and 
general cellular toxicity (measured in a THLE Cv assay). For each of these endpoints, compounds with a 
desirability index of >5 had significantly higher odds of achieving a favorable outcome in the assay than 
compounds with a low desirability index. This was found both for the marketed drug and candidate sets. 

Finally, a larger set of 11,303 Pfizer compounds were studied and the desirability indexes compared with 
results of the in vitro MDCK, P-gp and HLM assays described above, plus a dofetalide binding assay which is an 
indicator of risk of  interaction with the potassium channel encoded by the human ether-a-go-go related gene 
(hERG). Again, a high desirability index was found to correspond to a significantly higher probability of 
achieving a favorable outcome for each of these assays. Furthermore, compounds with a high desirability 
index were found to have a greater chance of achieving favorable results in all four of the in vitro endpoints 
simultaneously, the ideal outcome. 

Therefore, the authors concluded that the CNS MPO scheme would be useful for evaluating design ideas, 
triaging high-throughput screening hits and prioritizing compounds with a higher probability of successfully 
testing hypotheses in the clinic. They also emphasized the value of the flexibility in design provided by the use 
of desirability functions over ‘hard’ cut-offs (i.e. filters). 

  



 

 

  

  

  

Figure 10. The desirability functions defined in Wager et al. [49] for selection of compounds intended for a CNS target. 
Desirability functions are defined for calculated logP (clogP), calculated logD at pH=7.4 (clogD), molecular weight (MW), 
topological polar surface area (TPSA), the number of hydrogen bond donors (HBD) and the pKa of the most basic site. 
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Evolving Molecules using Pareto Optimization 
Ekins et al. described a software tool, “Pareto Ligand Designer,” that combines molecular transformation with 
Pareto optimization to evolve initial compounds with sub-optimal properties toward structures that are more 
likely to achieve a required property profile [50]. The algorithm employs an engine that transforms compounds 
using a set of rules similar to those implemented in the Drug Guru package [39]. The compounds generated 
are subjected to series of filters corresponding to desired values of predicted properties and an absence of 
structure alerts and then the Pareto optimal compounds are identified and saved before the remaining 
compounds are used as the input for the next iteration. 

In one example application, Pareto Ligand Designer was applied to a known CCK antagonist reported by Evans 
et al. [51] and shown in Figure 11(a). This compound has good biological activity, but is predicted to have poor 
blood-brain barrier (BBB) penetration and poor aqueous solubility. The objective in this case was to identify 
active compounds with improved predicted BBB and solubility, which were the parameters chosen for Pareto 
optimization. In addition, to ensure that the potential for activity against the target and other ‘drug like’ 
properties were retained in the compounds generated, a series of filters were applied at each iteration: a 
minimum similarity to the initial compound of 0.35, using ECFP_6 fingerprints [52] and Tanimoto similarity 
index [44], which corresponded to an activity belief of 16.6% using Belief Theory [53]; MW < 500 Da, 0.0 < 
clogP < 5.0; and an absence of alerts for undesirable substructures [54]. 

The authors observed that the mean objective function for the compounds selected at each iteration 
decreased dramatically within the first five iterations, before leveling off after approximately ten iterations. In 
particular, the predicted BBB improved for the first five iterations, while the predicted solubility began to level 
off after approximately ten iterations. This indicated that the compounds evolved exhibited a better balance of 
predicted properties. One example of a compound generated in the eighth iteration was presented and is 
shown in Figure 11(b). In [50] a further, more complex, example application was also presented corresponding 
to the simultaneous optimization of this compound to improve BBB, solubility and binding to Cytochrome P450 
CYP2D6. 

The authors suggest that tools like Pareto Ligand Designer and other methods for multi-parameter de novo 
design [40] [55] have the potential to generate relevant, synthesizable molecules while considering many 
properties simultaneously as a source for ideas in lead discovery, lead optimization and beyond. 

 

Rat IC50 = 0.30 M 

MW = 425.41 

AlogP = 3.44 

Predicted BBB (log([Brain]:[Blood]) = -0.58 

Predicted log solubility (M) = -5.77 

(a) 

 

Tanimoto similarity to (a) = 0.35 

MW = 295.35 

AlogP = 2.875 

Predicted BBB (log([Brain]:[Blood]) = 0.15 

Predicted log solubility (M) = -4.22 

(b) 

Figure 11 Example compound structures published by Ekins et al. [50] as an illustration of the application of Pareto 
Ligand Designer. The structure in (a) is a known CCK antagonist reported by Evans et al. [51] which was predicted to 
have issues with respect to blood-brain barrier penetration and solubility. The structure in (b) is one of the compounds 
proposed by Pareto Ligand Designer that is predicted to have improved blood-brain barrier penetration and solubility 
while retaining sufficient similarity to the initial compound to suggest an acceptable probability of activity against CCK. 



 

 

Rapid Focus in Lead Optimization using Probabilistic Scoring 
Here we present an example of the application of the StarDrop software application [56] to an on-going drug 
discovery project with the objective of identifying an orally bioavailable compound for a CNS target. The 
original progress of the project, which did not use any of the MPO methods described herein, is outlined in 
Figure 12(a).  This shows that the initial efforts were focused on a cluster of similar compounds in which good 
activity was identified, but the compounds exhibited either good CNS penetration or good oral bioavailability 
in vivo, but not both simultaneously. 

As shown in Figure 12(b), scoring the 200 compounds that were initially progressed, against the profile shown 
in Figure 13(a) and using a probabilistic scoring algorithm, suggests that the chance of success of these 
compounds is very small, in agreement with the experimental results. Furthermore, analysis of the resulting 
scores suggests that an alternative region of the ‘chemical space’ would be more likely to yield compounds 
with an appropriate balance of properties. This was again supported by the practical experience of the project; 
the next set of 200 compounds that had been progressed was focused on this alternative region and identified 
highly potent compounds with an improved balance of CNS penetration and oral bioavailability, as shown in 
Figure 12(c). However, in order to achieve this approximately 3100 compounds had been synthesized and 
tested for in vitro potency, approximately 400 compounds were progressed for detailed in vitro ADME studies 
and approximately 70 compounds were studied with in vivo pharmacokinetic (PK) models. Furthermore, there 
were no obvious strategies to find new active compounds with additional improvements in the PK. 

An alternative, MPO approach to this project was explored by retrospective application to the full library of 
3,100 compounds explored by this project with the goal of selecting 25 compounds for in vivo study. An 
outline of the process is shown in Figure 14. Predictions for key ADME and physicochemical properties were 
made for the full library of 3,100 compounds and the compounds were scored using a probabilistic scoring 
algorithm against the profile shown in Figure 13(a) for a good balance of properties for an orally dosed 
compound against a CNS target. 300 compounds were selected using a genetic algorithm and an objective 
function corresponding to a weighted sum of score and diversity (ws=0.25, wd=0.75). In this case, more weight 
was assigned to diversity because little was known about the structure-activity relationship for target potency 
and therefore it was necessary to explore the full chemical space to maximize the chance of identifying 
diverse, potent compounds. The potency data for the 300 selected compounds then were used, along with the 
predicted properties to rescore these compounds for a balance of potency and appropriate ADME and 
physicochemical properties using the profile shown in Figure 13(b). Finally, based on these scores, 25 
compounds were selected, again using a genetic algorithm to select based on a balance of score and diversity. 
However, in this case more weight was applied to score than diversity (ws=0.75, wd=0.25) to provide greater 
focus on the compounds with the highest chance of success. 

The results of this process are summarized in Figure 12(d). This shows that the initial selection of 300 
compounds provided a good coverage of the chemical space explored by this project and high scoring 
compounds were identified in different regions. The MPO process selected a number of compounds for which 
in vivo PK data had previously been determined and it is notable that the same results were found for the 
region that was heavily explored in the first phase of the project; good oral bioavailability or good CNS 
penetration, but not both. Furthermore, the best compound previously identified, with a good balance of 
potency, oral bioavailability and CNS penetration was also selected by MPO. Finally, a new region of chemical 
space was highlighted that had not previously been studied using in vitro ADME assays or in vivo PK, providing 
a new avenue for exploration for the project. 

This example shows how an MPO approach can significantly improve the efficiency with which high quality 
compounds can be identified, by focusing early on the chemistries most likely to have a good balance of 
properties required for in vivo efficacy. In this case, the same information could have been derived through 
synthesis and in vitro testing of 90% fewer compounds and with 70% fewer in vivo PK studies than the 
traditional process. Furthermore, a broader range of strategies were explored resulting in more opportunities 
to identify a good candidate drug. 
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Figure 12 Chemical space plots (as 
defined in Figure 9) illustrating the 
selection of compounds from a project 
targeting an orally active compound for 
a CNS target, as described in the text. 
Plots (a) through (c) show the initial 
progress of the project. In plot (a) the 
first 200 compounds selected for 
progression for detailed in vitro ADME 
testing are highlighted in blue. These 
are highly focused on a small region of 
chemical space shown by an ellipse and 
illustrative examples of the properties 
for two compounds are shown for in 
vitro activity against the target (pKi), 
and in vivo oral bioavailability (%F) and 
compound concentration ratio 
between brain and blood (B:B). Plot (b) 
shows the probabilistic scores for these 
compounds scored for an appropriate 
profile of predicted ADME properties 
for an orally dosed compound for a CNS 
target shown in Figure 13(a); the points 
are colored from low (red) to high 
(yellow) according to their ADME 
scores, indicating that the region 
shown in the ellipse corresponds to 
high risk chemistry, while other regions 
are more likely to yield a good balance 
of properties. Plot (c) shows the second 
200 compounds chosen by the project 
for progression in green and the 
experimental results shown for two 
example compounds confirm that this 
region yielded compounds with 
improved in vivo disposition, as 
predicted. Finally, plot (d) illustrates an 
alternative strategy for exploration of 
this chemical space, as outlined in 
Figure 13. The compounds selected for 
potency testing, based on a balance of 
score and diversity, are colored from 
red to yellow, corresponding to low to 
high score respectively for a balance of 
in vitro potency and predicted ADME 
properties using the profile in Figure 
13(b). The dark blue points indicate 25 
compounds selected for in vivo PK 
testing and results for three illustrative 
compounds are shown. This suggested 
an alternative area of chemical space, 
shown by the ellipse, which had not 
previously been investigated with in 
vitro ADME and in vivo PK. 
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Figure 13. The profiles used to score compounds for an oral administration against a CNS target in the process shown in 
Figure 14. Profile (a) employs only predicted ADME properties that may be applied to a virtual library before target 
activity has been measured. The profile shown in (b) combines the predicted ADME profile with the experimentally 
measured target potency (pKi) to prioritize compounds that have been synthesized and tested for target activity for 
further study. 

 

 

Conclusions 

It is well established that successful drugs require a delicate balance of many factors relating to their biological 
and physicochemical properties and achieving an appropriate combination of properties is one of the major 
challenges in the drug discovery process. Dealing effectively with complex, multi-dimensional data is a 
challenge. Therefore, there is a natural tendency to simplify and initially focus on optimization of a critical 
property, typically target potency. The expectation is that, having optimized this property, other properties can 
be tackled either by filtering compounds that do not meet the corresponding criteria or optimizing these in 
turn. Unfortunately, having become locked into a tight area of chemistry by the structure-activity relationship, 
it is often impossible to optimize other properties without sacrificing potency. This leads to late stage failures 
or multiple, long iterations in lead optimization due to the need to ‘lead hop’ to new chemical series in the 
search for acceptable in vivo disposition and safety. To avoid these issues, it is important to simultaneously 
consider multiple parameters as early as possible in the process to quickly focus on chemistries with a good 
balance of properties that give the best chance for rapid progress in lead optimization. 

In this review, we have explored a range of approaches to guide the design and selection of compounds that 
achieve a required multi-parameter profile, from simple rules-of-thumb through to more sophisticated and 
computational methods. We have examined the relative strengths and weaknesses of these approaches 
relative to the requirements for interpretability, flexibility with respect to setting property criteria and their 
weights, and the capability to take into account the uncertainty in the underlying data on which decisions are 
based. A summary of these relative strengths and weaknesses is summarized in Table 3. 
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Figure 14. A process for exploration of the project chemical space illustrated in Figure 12, based on probabilistic scoring 
and compound selections that balance quality and diversity, as described in detail in the text. 



 

 

Table 3. A summary of the six MPO methods discussed and relative strengths and weaknesses against the 
requirements for application to drug discovery. 

 Interpretability Flexibility in 
Criteria 

Weighting Account for 
Uncertainty 

Rules of Thumb Very easy to 
understand 

Criteria are pre-
determined 

No weighting Only by applying 
criteria with 
discretion 

Filtering Very easy to 
understand 

Cut-off criteria 
may be arbitrarily 

defined 

Only by specifying 
order of filters 

No 

Calculated Metrics Clear 
interpretation 

except for most 
complex metrics 

Metric is pre-
defined. 

Flexibility in 
setting target 

value 

Pre-defined by 
metric 

Uncertainty rarely 
propagated to 

value of 
calculated metric 

Pareto Optimization Clear 
interpretation for 
small number of 

properties 

Not based on 
criteria. Different 
property balances 

selected 

Difficult to weight 
different 

properties in 
algorithm. Post-
hoc analysis can 

be applied 

Not explicitly 
considered, but 

spreads risk 
across different 

strategies 

Desirability Functions Impact of each 
property easy to 

interpret 

Arbitrary criteria 
may be defined. 

Not only hard cut-
offs 

Arbitrary weights 
may be applied to 

each property 
criterion 

Avoiding hard 
cut-offs reduces 

impact of 
uncertainty 

Probabilistic Scoring Impact of each 
property easy to 

interpret 

Arbitrary criteria 
may be defined. 

Not only hard cut-
offs 

Arbitrary weights 
may be applied to 

each property 
criterion 

Explicitly 
accounts for 

uncertainty and 
demonstrates its 

impact  

 

Choosing the most appropriate MPO method for a drug discovery project depends the project’s phase and 
objectives and the availability of data. When little experimental or predicted property data is available, for 
example early in a project, and the goal is to identify a typical orally bioavailable, small molecule drug, it makes 
sense to learn from the history of successes and failures in drug discovery by applying appropriate rules of 
thumb or calculated metrics. These will help to bias the odds in favor of success by guiding the chemistry 
toward an appropriate physicochemical property space. If the property requirements for a successful 
compound are not known a priori, Pareto optimization provides a powerful approach to explore different 
trade-offs in the search for the best balance of properties. This method is particularly useful in designing 
libraries or expanding chemistry to explore a wide range of different strategies. In this scenario, considering 
the uncertainty in the data is less important, as the objective is to ‘spread the bets’ across a wide range of 
possibilities. Indeed, when the downstream results following a Pareto optimization indicate the most 
appropriate property profile, a more focused approach can be used to reexamine the options and identify 
alternatives that are likely to satisfy these requirements. Finally, when a project team is able to define a target 
product profile for an ideal compound and appropriate trade-offs between the property criteria, a method 
based on desirability functions will help to quickly focus on the compounds with the best balance of 
properties, without the risk of the artificially hard distinctions between compounds that filters would impose. 
Ideally, in this scenario, a probabilistic approach should be applied to avoid giving undue weight to uncertain 
data and to highlight where obtaining additional data would permit a more confident decision to be made. 

The MPO methods discussed in this review enable predicted and/or experimental data to be integrated and 
assessed against a project’s objectives to prioritize compounds throughout the drug discovery process. We 
have presented some illustrative examples of how MPO can be applied from hit discovery through lead 
optimization to identify compounds with the best chance of success against a project’s objectives. Most of the 
examples presented in this review have focused on the application of MPO to properties data generated in 



 

 

silico. This is probably due to the origins of MPO as a computational field, hence early adopters in the drug 
discovery community have tended to come from this background. In addition, the strongest need for MPO 
arises when interpreting large quantities of data and in silico methods have the greatest potential to generate 
data sets containing large numbers of compounds and properties, quickly and at low cost. However, it should 
be emphasized that most of the MPO methods discussed herein can equally be applied to purely experimental 
data. This is becoming increasingly important given the range of assays for ADME and toxicity properties that 
are routinely conducted on large numbers of compounds in early drug discovery. An example application of 
probabilistic scoring to an data set comprised only of in vitro data, to identify compounds with improved  in 
vivo disposition in lead optimization, is described in [33]. 

Finally, given the complexity of the data that is considered in MPO, most of these methods rely on 
computational algorithms and software. Simply gathering, storing and making the data easily available to 
project scientists is a challenge for informatics platforms [57]. However, it is essential that software 
implementing MPO algorithms be intuitive and user friendly, as it should be possible for all decision makers to 
explore trade-offs in data and easily interpret the results, even if they are not computational experts. These 
tools should also provide a foundation for the effective collaboration of scientists from the different disciplines 
that contribute to drug discovery, as each will bring a different perspective to the properties required for a 
successful compound. 
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