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The Objectives of Drug Discovery
Multi-parameter optimisation
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Challenge 1: Data overload
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Challenge 1l: Data overload

Visualisation 1s important but not enough...
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How can you make a confident decision by looking at these?

*Segall and Champness (2010) GEN, 30 (Sep 1) http:

bit.ly/cSx4Tm




Challenge 2: Uncertainty in Data
Statistical

e Experimental variability/error

- Single measurements: assay variability

o pK/plCs,~ 0.3 —0.7 log units (factor of 2-5 in K,/IC,,)
— Multiple replicates: mean and standard error in mean
e Statistical uncertainty in predictions

R? = 0.818602 logS Predicted versus Observed
— Standard error of prediction (assessed
from validation)

o logP ~ 0.4 -0.5 log units
B
o logS~ 0.7 -0.8 log units :
o pK;~0.9-1.0log units

- Need to consider domain of applicability
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Segall and Champness (2015) J. Comput.-Aided Mol. Des. 29(9) p. 809



Challenge 2: Uncertainty in Data
Relevance

e All sources of data in drug discovery are models of the ultimate
human patient

— Invivo, in vitro or in silico
- Inference/translation

e For example, Caco-2 permeation (model of absorption)*:
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* Data from Irvine et al. (1999) J. Pharm. Sci. 88 pp. 28-33
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Approaches for MPO in Drug Discovery
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Requirements for MPO in Drug Discovery

e Interpretable

— Easy to understand compound priority and how to improve
compounds’ chances of success

e Flexibility

— Define criteria depending on therapeutic objectives of project
e Weighting

— Take into account relative importance of different endpoints to
success of project

e Uncertainty

— Take uncertainty into account, avoid missed opportunitites



Approaches for MPO

e Many methods have been applied for MPO in drug
discovery
— Rules-of-thumb
- Filtering
- Calculated metrics
— Pareto optimisation
— Desirability functions
— Probabilistic scoring

e For a detailed review, please see:
- M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310(2012)



Rules of Thumb

e The most famous — Lipinski’s Rule-of-Five for oral absorption

logP<5 MW<500

HBD<5 HBA<10

e Many other have been proposed, e.g. Hughes et al. * explored
risk of adverse outcomes in in vivo toleration studies

logP<3 TPSA>75 A?

e Simple, easy to apply and interpret

e But:

— Rules tailored to specific objectives — lack of flexibility
- Risk of too rigid application

* Hughes et al. Bioorg Med. Chem. Lett. (2008) 18 p. 4875



Rules of Thumb

e How predictive are rules-of-thumb?
- E.g. Lipinski’s RoF applied to 1191 marketed drugs

RoF result

Pass Fail
(<1 RoF Failure) (>1 RoF Failure)

Non-oral

e Neither specific nor sensitive...

© 2015 Optibrium Ltd.




Filtering

Potency

Metabolic Stability

© 2015 Optibrium Ltd.



Caco-2 log(Papp) (nm/s)

Considering Relevance
What impact does a value have on the ultimate outcome?

e Consider Caco-2 permeation again™

- Experimental model of human intestinal absorption (HIA)

— What is chance of a compound achieving HIA > 50%
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*Irvine et al. (1999) J. Pharm. Sci. 88 pp. 28-33
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Desirability Functions

e Relate property values to how ‘desirable’ the outcome
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e Combine multiple properties into ‘desirability index’

dq(X1)+d(Xp)+-+dp(Xp)
n

- Additive:

— Multiplicative: D = Ti/dl(Xl) X dy(Xy) X -+ xd(X;,)

e Flexible and easy to interpret

— Clear indication of which properties are poor

Harrington EC. (1965) Ind. Qual. Control. 21 p. 494



Importance of Uncertainty

A B C

L v

X W

100 10 1 0.1
UNDESIRABLE DESIRABLE
Property Z

e Conclusions:

* Reject compound A
e Cannot confidently choose between B and C

M.D. Segall et al. (2006) Expert Opin. Drug. Metab. Toxicol. 2(2) pp. 325-337



Importance of Uncertainty
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e Conclusion:

— Compound D has higher probability of success

M.D. Segall et al. (2006) Expert Opin. Drug. Metab. Toxicol. 2(2) pp. 325-337



Probabilistic Scoring
Scoring Profile
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Probabilistic Scoring

* Property data
- Experimental or predicted

e Criteria for success e Score (Likelihood of Success)
- Relative importance i

e Uncertainties in data

- Experimental or statistical

Data do not . ‘ |
separate these (1
as error bars ° %
overla U T Bottom 50%
g o “\N‘ may be rejected
A o Toe with confidence
Best Compounds ordered by score WO rSt

M.D. Segall et al. (2006) Expert Opin. Drug. Metab. Toxicol. 2(2) pp. 325-337



Probabilistic Scoring

Guide redesign to improve chance of success
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Balancing Quality and Diversity




Visualising ‘Chemical Space’
Exploring trends across chemical diversity
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Balance Quality Against Diversity

Mitigating risk

© 2015 Optibrium Ltd.
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Case Study
Rapid Focus in Lead Optimisation




Challenge

Identify orally active compound for a CNS target.

Project ‘chemical space’ of 3100 compounds
Area of chemistry focus

Summary of original project
progress
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* Focus biased towards one area
of chemistry space

M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310 (2012)



Challenge

Identify orally active compound for a CNS target.
Project ‘chemical space’ of 3100 compounds

Summary of original project
progress

* Focus biased towards one area
of chemistry space

* Poor ADME properties
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Challenge

Identify orally active compound for a CNS target.
Project ‘chemical space’ of 3100 compounds

A more appropriate balance of properties

Summary of original project
progress

e Focus biased towards one area
of chemistry space

e Poor ADME properties
e Follow-up chemistry exploration

e Nowhere obvious to go next!

Cost so far: >3000 compounds synthesised, 400 compounds
tested in vitro and 70 compounds tested in vivo

M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310 (2012)



StarDrop Process

Select 25 compounds for in vivo testing

3,100 compound
virtual library

¥

In silico ADME profiling

Score for oral absorption
and CNS penetration

Select 10% based on

StarDrop score and diversity (25:75)

Measure in vitro potency

¥

Score for balance
of ADME and potency

Select 25 based on
score and diversity (75:25)
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Results

Successfully selected same
key compounds identified by
the project but with:

Final selection

e 90% fewer compounds
synthesised

e 90% less potency screening
e 70% less in vivo testing

Interesting
chemistry?

In addition, identified a new
area of chemistry with good
potential!

M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310 (2012)



Conclusion

e MPO is a powerful approach to select and design
high quality compounds

— Quickly target compounds with high chance of success
— Avoid missed opportunities

e Be aware of the limitations of drug discovery data

— Relevance
- Uncertainty

e A ‘balanced’ strategy can dramatically reduce the time
and resources required for compound optimisation

e For more details, please see:

— M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310(2012)
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