
Machine learning can struggle to make accurate predictions when it comes to 
drug discovery; however, imputation methods are providing more accurate 
results for scientists allowing them to discover quality compounds  
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Machine learning (ML) methods are routinely used in drug 
discovery to build models that can predict the properties of 
compounds directly from their chemical structure. These 
quantitative structure-activity relationship (QSAR) models 
take ‘features’ of chemical structures (often referred to as 
‘descriptors’) as input to predict one or more properties, 
including activities against biological targets or in phenotypic 
assays and a broad range of absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) properties. 
However, even the most sophisticated ML methods can struggle 
to produce high-quality predictions, due to the limitations of 
drug discovery data: the number of compounds with data for 
any given experimental endpoint is small when compared with 
ML datasets in many other fields; the overlap of compounds 
measured in different endpoints is even smaller; and the data 
generated by biological assays are noisy due to experimental 
variability.

Imputation methods take a different approach, using the 
limited property data that are available as inputs to ‘fill in 
the gaps’ where measured values are not yet available. 
Imputation methods apply deep learning to both compound 
descriptors and sparse assay data, as illustrated in Figure 1. 
The resulting model ‘learns’ directly from correlations between 
experimental endpoints, in addition to relationships between 
structural features of compounds and the experimental data. 
This approach makes better use of the sparse and noisy data 
in drug discovery to produce more accurate predictions than 
QSAR models, which enables better targeting of the most 
promising compounds.

This approach was first demonstrated in a proof-of-concept 
study using a public-domain dataset, which comprised 
kinase activities for 13,000 compounds, measured across 
159 experimental assays corresponding to different kinase 
targets (1). In this dataset, only 5% of the possible measured 
values were available. In the study, deep learning imputation 
outperformed a wide variety of ML methods, including 
the latest multi-target deep neural networks, and other 
imputation approaches, as illustrated in Figure 2. More 
recently, a practical application to an ongoing drug discovery 

project confirmed the 
advantages of deep 
learning imputation 
when applied to 
heterogeneous 
data, including 
activities measured 
in biochemical and 
phenotypic screens, 
and in vitro ADMET 
properties (2). In 
particular, in Figure 
3, we can see the 
excellent performance 
on a complex, 
phenotypic endpoint 
that conventional QSAR 
models cannot predict. 

Figure 1: An illustration a deep learning imputation method. This takes compound descriptors and sparse assay 
data as input and imputes the missing experimental values. Compound descriptors are illustrated by orange 
squares in a complete matrix, assay data are shown as green squares in a sparse matrix, and imputed values 
as purple squares
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This result illustrates the advantage of directly learning the 
relationships between assay endpoints from sparse data. 
Phenotypic activities are the result of multiple factors, 
including target activities, cell permeability, solubility, and 
protein binding. It is not possible to capture these complex 
relationships using QSAR models, which achieved a result 
that is worse than random!

Deep learning imputation models 
also provide a probability distribution 
for each imputed value, focusing 
attention on the most confident, 
and hence, most accurate, results, 
providing the best basis for decision-
making (see Figure 2). Analysis of the 
distribution of predicted values also 
identifies when an experimentally 
measured value differs significantly 
from the expected result. Such an 
outlier could represent an unexpected 
structure-activity relationship to guide 
further optimisation, or a potential 
experimental error to consider for 
retesting. Errors may be a false 
negative and a valuable missed 
opportunity.

Furthermore, as imputation methods 
learn about the relationships 
between experimental endpoints, 
they can be used to suggest the 

most important experimental data to 
measure and with which to predict 
downstream outcomes of interest with 
greater accuracy. This ‘active learning’ 
approach focuses experimental efforts 
on obtaining the critical results to 
choose the highest-quality compounds 
for progression.

A global pharmaceutical company 
may have millions of compounds in 
their collection and results from tens 
of thousands of experimental assays. 
However, typically, fewer than 1% of 
these potential data points will have 
been measured in practice, so imputing 
the missing values can result in up to 
100x more data to store and search, 
corresponding to billions of data 
points – a true ‘Big Data’ challenge, we 
describe as the ‘massive matrix’.

Addressing the Big Data Challenge

Given the magnitude and complexity of 
the data, several technical challenges 

must be addressed to deliver the full potential of a platform for 
data imputation:

•  The platform should have access to the latest experimental 
data, for example, a data warehouse or electronic lab 
notebook

Figure 2: Performance in root mean squared error (RMSE) measured on the independent test 
set of kinase activity data for three imputation models – deep learning imputation, collective 
matrix factorisation (CMF) (6), and profile QSAR 2.0 (pQSAR 2.0) (8) – and two QSAR methods 
– random forest (5), and a deep neural network (Multi-target DNN) (7). This shows that deep 
learning imputation models achieved the most accurate predictions on the full test set. 
Furthermore, this illustrates that the accuracy of the models prediction increases (corresponding 
to a reduction in RMSE) when focusing on the most confidently predicted results

Figure 3: Results on an independent test for a project-related heterogeneous data set, including 
biochemical activities (A bio. 1-3 and B bio. 1-5) phenotypic cell-based assays (A cell. 1 and 2) and 
ADMET endpoints. The coefficient of determination (R2) is shown for the best of four QSAR methods 
(blue) with an Alchemite model (orange) for each of the endpoints. An R2 of one indicates a perfect 
prediction, zero represents random performance and a negative value is worse than random. A cell-
based assay is highlighted that illustrates the ability of deep learning imputation to dramatically 
outperform conventional QSAR models on complex, phenotypic assays
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•  Models should be updated frequently to ensure that the 
results are based on these latest data

•  The architecture must be scalable to build models of 
pharma-scale datasets and handle the resulting massive 
matrix, which employs cloud deployment for cost-
effectiveness

•  Any such cloud deployment requires rigorous security to 
protect the intellectual property in compound structures 
and their associated data

•  Predictions must be easily and intuitively accessible 
to scientists, to make quick and effective decisions on 
compound selection and prioritisation of experimental 
efforts

Figure 4 illustrates the architecture that to address these 
challenges. Two zones separate the handling of sensitive 
data on-premises (the ‘blue zone’) from modelling and 
storage of the resulting massive matrix in the cloud (the 
‘green zone’). In the blue zone, a ‘Query Service’ accesses 
the raw data and compound structures from the original data 
sources. These are pre-processed by the ‘Cerella Service’, to 
anonymise and encrypt the data while still in the blue zone. 
No compound structures, proprietary assay information, nor 
compound identifiers are passed to the green zone – even 
the definitions of the compound descriptors are obfuscated. 

This anonymisation and encryption, along with high levels of 
security, ensure the confidentiality of the modelling data and 
results.

A sparse matrix is populated with the anonymised 
experimental data in the green zone and used to build a deep 
learning imputation model. The flexible resources available on 
a cloud platform enable the building of models with pharma-
scale datasets in hours. This process runs automatically so 
that the experimental data can be updated and the model 
rebuilt regularly, even nightly, to keep the predictions fresh. 
The latest model is used to impute the missing experimental 
values in the massive matrix.

To address the challenge of storing and efficiently searching 
this large volume of data, we use a distributed NoSQL 
document-based database (Apache Lucene) and an 
Elastisearch HTTP front end (3-4). A document-based 
database provides greater scalability than a conventional 
relational database and enables distribution across compute 
and storage servers, to provide interactive access to even the 
largest of datasets.

Even though the green zone components are deployed in the 
cloud, they can be contained in a virtual private cloud. This 

Figure 4: Schematic of the platform architecture. The ‘blue zone’ is hosted on-premises and manages sensitive information, such as compound 
structures and assay identifiers. The ‘green zone’ is hosted in a virtual private cloud, providing scalability for modelling, storage and searching 
of the ‘massive matrix’ of experimental and imputed data, but has no access to the most sensitive information
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This offers an even greater level of security by ensuring that 
the compute and storage resources are isolated from external 
access, benefitting from cloud providers’ extensive security 
infrastructure, and preventing any possibility of data from 
different organisations being accessed.     
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Image 1: Example workflows with results of an imputation model. (a) Querying a database for compounds with desired criteria can also return 
compounds with values that are imputed to meet the criteria (blue cells) as well as those that have already been experimentally measured 
(white cells). (b) An outlier (purple cell) can be investigated to compare the measured value (red line) with the probability distribution for the 
corresponding imputed value. (c) Selecting a target assay (dark blue column) for prediction and additional assays that can be performed suggests 
the most valuable assays and compounds to measure with which to make better predictions for the best compounds for the target assay
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Image 1: Example workflows with results of an imputation model. (a) Querying a database for compounds with desired criteria can also return 
compounds with values that are imputed to meet the criteria (blue cells) as well as those that have already been experimentally measured 
(white cells). (b) An outlier (purple cell) can be investigated to compare the measured value (red line) with the probability distribution for the 
corresponding imputed value. (c) Selecting a target assay (dark blue column) for prediction and additional assays that can be performed suggests 
the most valuable assays and compounds to measure with which to make better predictions for the best compounds for the target assay
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offers an even greater level of security by ensuring that the 
compute and storage resources are isolated from external 
access, benefitting from cloud providers’ extensive 
security infrastructure, and preventing any possibility of 
data from different organisations being accessed.     

The Cerella Service also handles all communication 
with the user in the blue zone by decrypting the 
results and matching them with the corresponding 
compound structures and assay information. A rigorous 
authentication system also ensures that users can only 
access the data for which they have permission.

Finally, the model and its result predictions must answer 
key drug discovery project questions in a natural way. It is 
not sufficient to present vast quantities of data and leave 
them to the scientists to analyse.

For example, as shown in Image 1(a), a scientist 
may query a database for compounds meeting their 
requirements, e.g., measured activity against a target 
of interest, good permeability and high solubility. In 
addition to those found to meet these criteria based on 
experimental data, more compounds can be presented 
based on confidently imputed results. These can be 
prioritised for further investigation to confirm the imputed 
hypotheses.

Experimental results can be automatically flagged as 
outliers, as illustrated in Image 1(b). By ‘drilling down’, 
the measured value can be compared with the imputed 
probability distribution for that specific value, to identify 
potential experimental errors or new opportunities due to 
false negatives.

Alternatively, we can choose an assay for which we want 
to make better predictions and ask which measurements 
would be most valuable to improve the quality of the 
model results. Image 1(c) shows a workflow that begins 
with selecting a cell-based assay as a target for prediction. 
We can then specify how other lower-cost or higher-
throughput assays could be run, and the output highlights 
the most valuable assays and compounds to measure and 
provide as inputs to the model to most accurately identify 
the best compounds for the target assay.

Conclusions

Data imputation using deep learning is a new approach 
that gains more value than traditional QSAR models 
from experimental data, to make better predictions for 
compound activities and properties, and confidently guide 
critical decisions in the prioritisation of compounds and 
resources. However, this method creates new challenges 
in managing the volume of the resulting data, making the 
results easily accessible and enabling decision-makers to 
answer their key questions intuitively.

We have presented an approach to address these challenges, 
using a hybrid on-premises and cloud-based architecture, 
providing a best-of-both-worlds solution. The on-premises 
elements handle the most sensitive data, while cloud 
deployment provides the scalable resources required for 
model building and execution, and also for the storage and 
quick interrogation of the results.

The combination of an innovative scientific approach with 
modern IT infrastructure delivers new ways to guide the 
optimisation of high-quality compounds more efficiently.
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