

Christian Lemmen, Marcus Gastreich, Carsten Detering Docking — An Old Hat or Hats Off?

A grand challenge for all of us is how to best <u>incorporate existing knowledge</u>.

Martha S. Head, GSK, in 2009...

What a Traditional Docking Sees...

But We Know More...

For example:

Hot spots, known recepter ph4s...

=> FlexX-Pharm¹ takes care of this

Metal coordination chemistry

=> *Seebeck algorithm*² takes care of this

Known binders, SAR, preferred motifs, ... <u>LIGAND</u> knowledge

"Pareto's 80%": Compound Series or Focused Libraries

©reated with MONA

So For a Problem Like This...

Instead Of Discarding All Knowledge...

... Let's Use It <u>Cleverly</u>!

Exploiting The Common-ness of Scaffolds

Template

MCS — Maximum Common Substructure

BioSolveIT 2017

Beware Of Multiple Mappings!

Technically We Do The Following

- 1. Specify "knowledge" (i.e. a template molecule)
- 2. Determine <u>MCS</u> including all possible mappings
- 3. <u>Superpose</u> common fragment considering <u>all conformers</u>
- 4. Fast incremental build-up

To Be On The Safe Side...

We use the existing docking strategy as a backup:

- Mappings of <u>triangles</u> (traditional FlexX)
- "New" SIS (single interaction scan)

Incremental Build-Up

Considering all possible torsions 12 valid angles => 12⁹ = 5.159.780.352 conformations!!

In ALK (4CD0.pdb, Pfizer)

Putting Things Together

- We exploit prior *knowledge* => MCS-guided template docking
- *Combining* with extended traditional FlexX-posing => Best of both worlds
- Trusted *incremental* build-up
 => Quick, fully flexible placement

Remaining "challenges":

H-bond network refinement, H₂O, and scoring of course

Protonation, Tautomers, H₂O

D

5

8

Tautomer/Protonation-Refinement

We optimize the assignment (H^+/H_2O) for <u>every</u> pose in ms!

ProToss (Proposals in ms); see Bietz et al., 2014, JChemInf 6 12

Doing This Right is Not Trivial

ProToss optimizes the entire H-bonding network... => correctly most of the time and a in split-second

PDB: 1BR5

Energetics

HYDE: Fast, Visual ΔG

A BAYER & Univ. Hamburg Collaboration; cp. for ex. Schneider et al. 2013, JCAMD 27(1):15-29.

HYDE: Δ **G** Approximations in Seconds

- The logP connects dehydration and H-bonds in a natural way => No unphysical parameters (only 8 logPs, f_{sat})
- Computation is super fast (~ very few seconds; others need days!)
 => <u>Interactive</u> L.O.
- Atomic increments
 => <u>Visual</u> atomic affinities
- - Mondal et al, Angew. 2014
 - Barho et al., ChemMedChem 2014
 - Tzvetkov et al., EurJMedChem 2017
 - Rodeschini et al, JMC 2017 (submitted)

Application Scenarios

Sugar — Tough Stuff for Docking

Sugars / glycosylic compounds:

- Exhibit many multifunctional (D/A) hydroxyl groups
- Tend to bind on shallow target surfaces
- Very flexible and (close-to-)symmetric

=> Traditional docking often fails.

12 Galectin Inhibitor Series Docked: Pocket & ConfSpace Well Sampled

Docking In Good Agreement With Crystal (5e89)

Future Directions

I Library-Based Pocket Exploration

II MedChem Style Analoging

<u>The Idea:</u>

- 1. Use any promising compound as a starting point
- 2. Apply typical MedChem transformations
- 3. Rapidly (template!-) dock & score the new compouds

Hats Off to Knowledge-Inspired Docking!

Soon available in SeeSAR

biosolveit.com/download

