

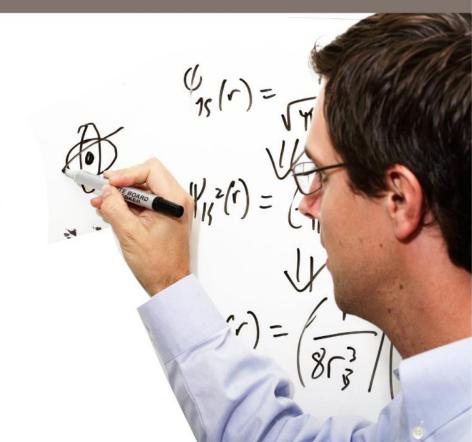
Data Visualisation: New Directions or Just Familiar Routes?

Ed Champness, Matt Segall & Peter Hunt

Overview

- Data Visualisation
- Drug Discovery Data
- Multi-Parameter Optimisation
- Using Data Visualisation to Drive Optimisation
- Conclusions

Using Data Visualisation



Why use data visualisation?

Our visual system is *extremely* well built for visual analysis

- The optic nerve is a very big pipe
- Our brains are very good at edge detection, shape recognition and pattern matching

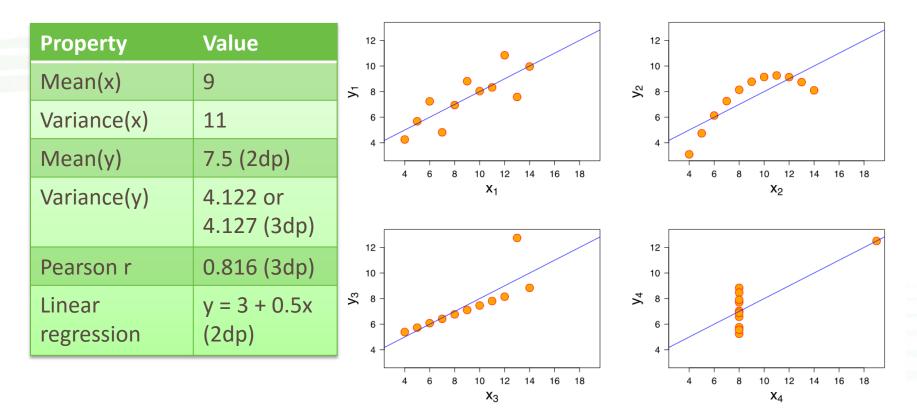
(Noah Iliinsky, Amazon Web Services, ComplexDiagrams.com)

BUT...

Data visualisation creates powerful, elegant images from complex data. It's like good prose: a pleasure to experience and a force for good in the right hands, but also seductive and potentially deceptive. Too much data visualisation is the statistical equivalent of dazzle camouflage: striking looks grab our attention but either fail to convey useful information or actively misdirect us. *(Tim Hartford – Financial Times)*

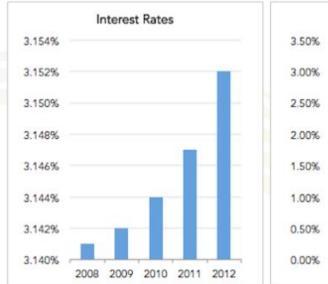
Use of data visualisation When the statistics deceive us...

Anscombe's quartet

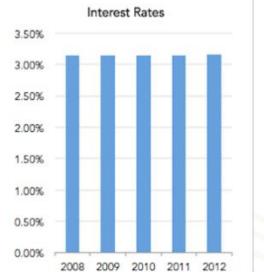


en.wikipedia.org/wiki/Anscombe%27s_quartet

Misuse of data visualisation

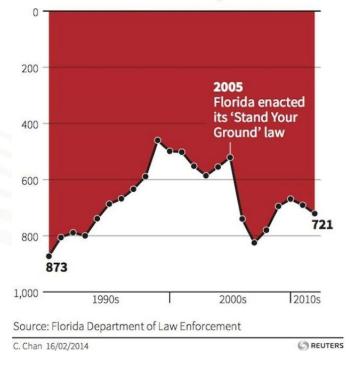


Same Data, Different Y-Axis



Gun deaths in Florida

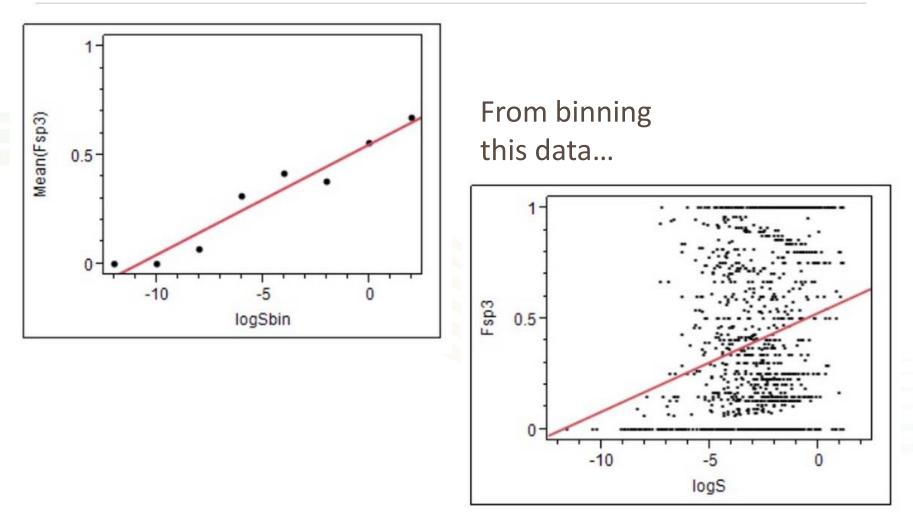
Number of murders committed using firearms



Ravi Parikh - Heap Analytics:

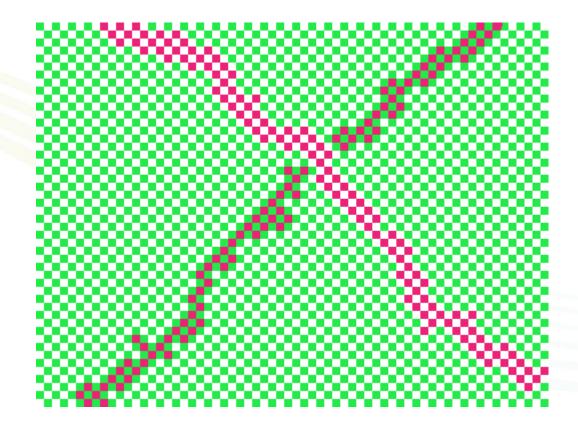
gizmodo.com/how-to-lie-with-data-visualization-1563576606

Misuse of data visualisation



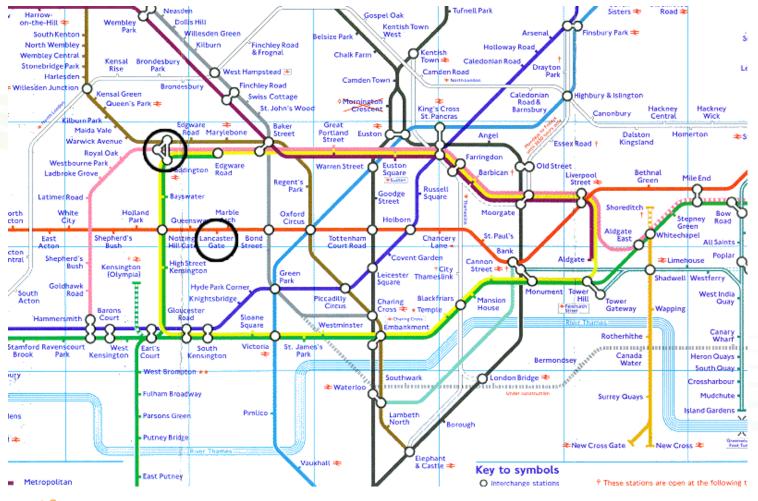
Inflation of correlation in the pursuit of drug-likeness. Kenny, Montanari - J Comput Aided Mol Des. 2013 Jan;27(1):1-13

Colour can have the wrong impact...



www.grand-illusions.com/opticalillusions/square/

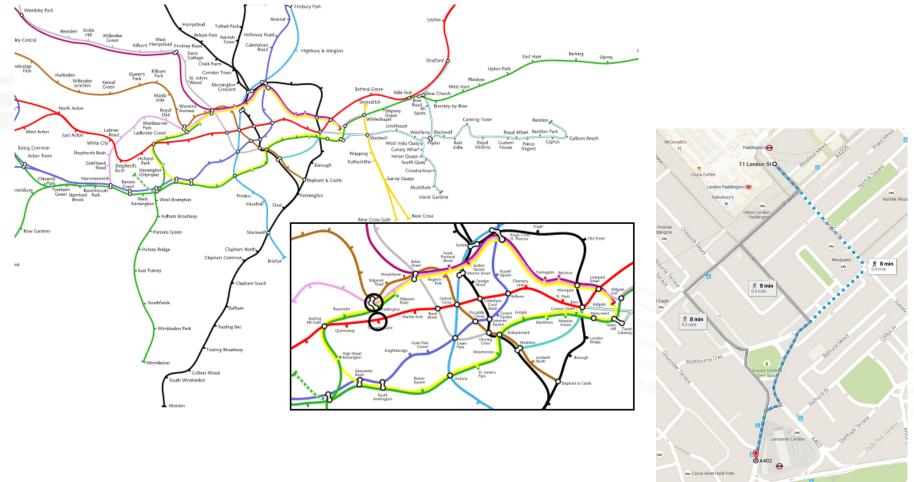
Misuse of data visualisation Using a good visualisation for the wrong purposes...



Sayf Sharif

lunametrics.com/blog/2013/02/04/power-danger-data-visualization

Misuse of data visualisation Using a good visualisation for the wrong purposes...



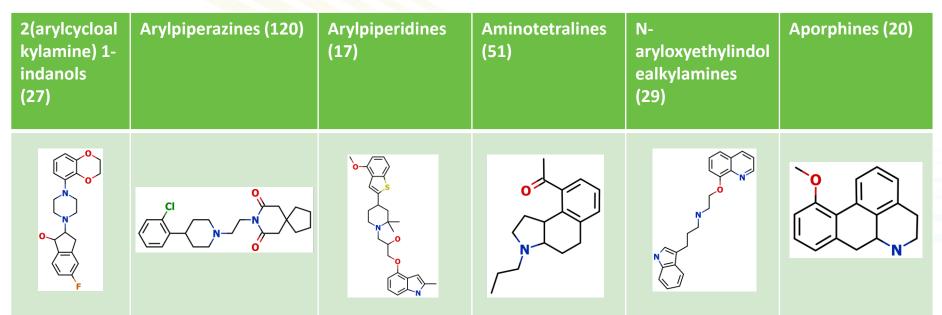
Sayf Sharif

lunametrics.com/blog/2013/02/04/power-danger-data-visualization

Back to drug discovery...

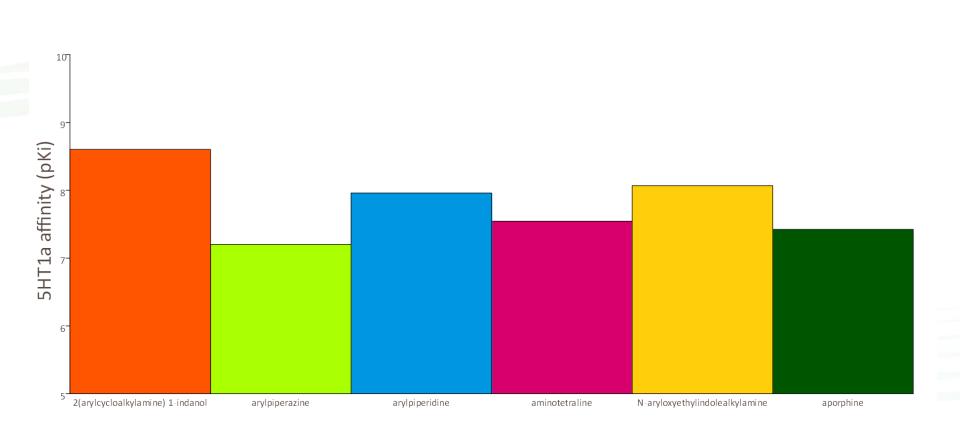
Let's looks at some drug discovery data:

- Library of 264 5HT1a compounds
- Measured potencies and other ADME/physicochemical properties
- Six different chemotypes:

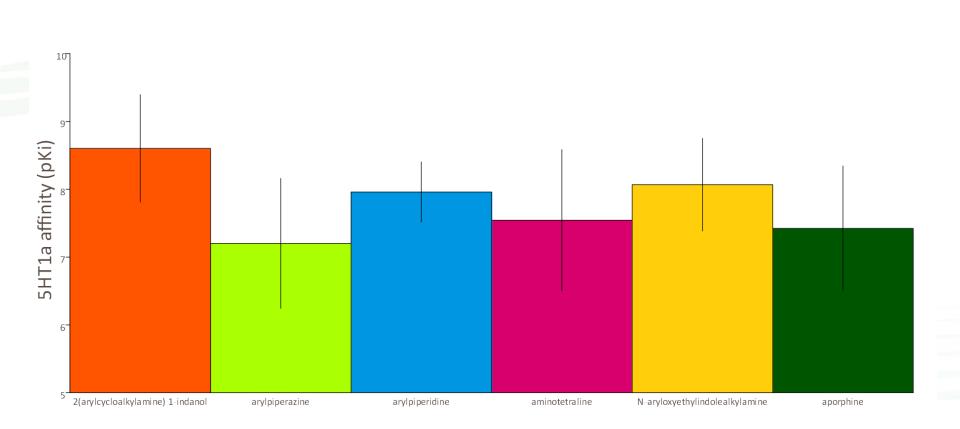


Let's think about how we might prioritise these...

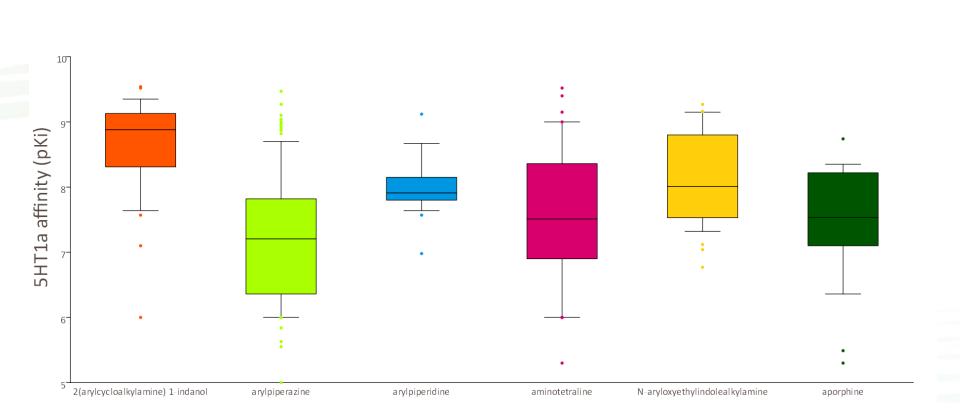
Let's start with potency



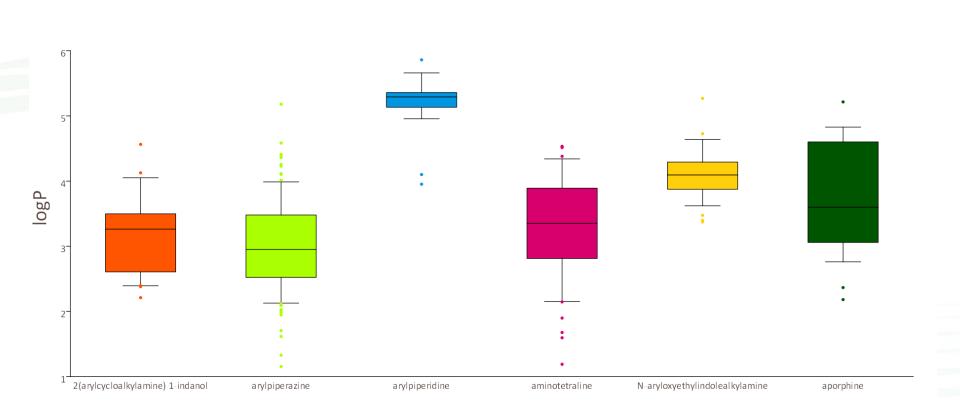
Let's start with potency – with error bars



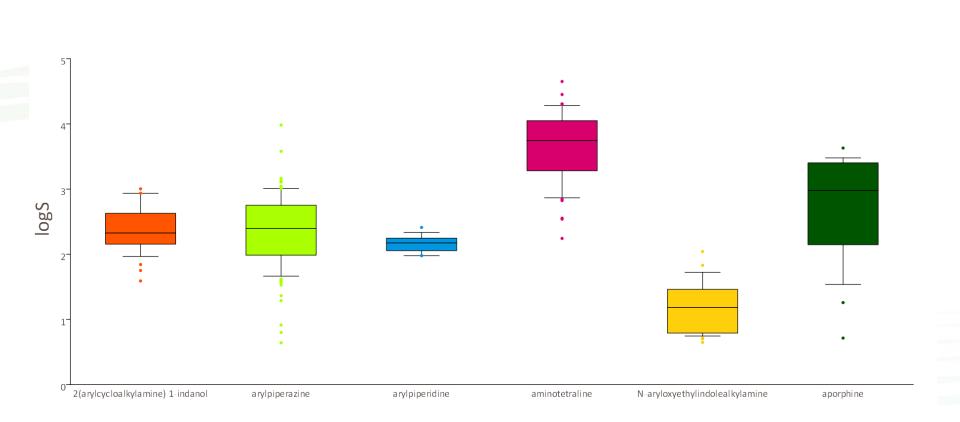
Box plot gives a clearer picture



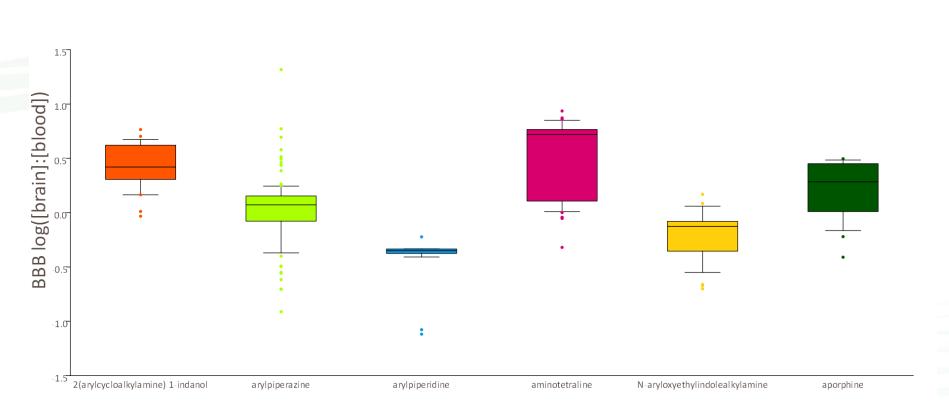
Other properties: logP



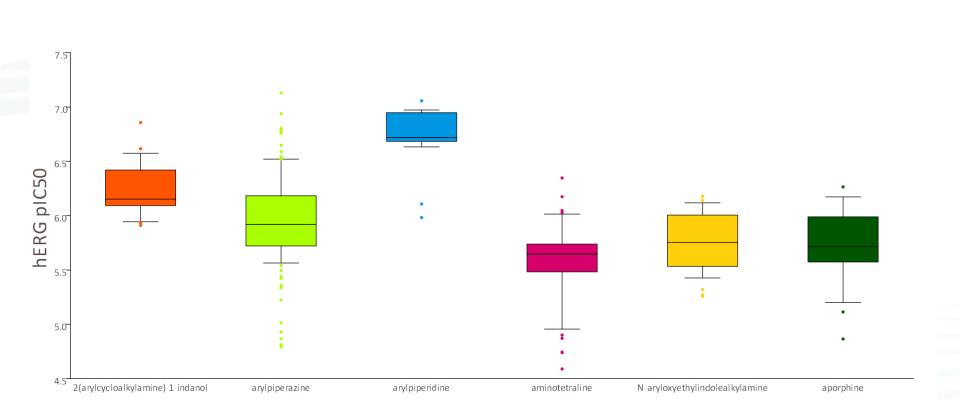
Other properties: Solubility (logS)



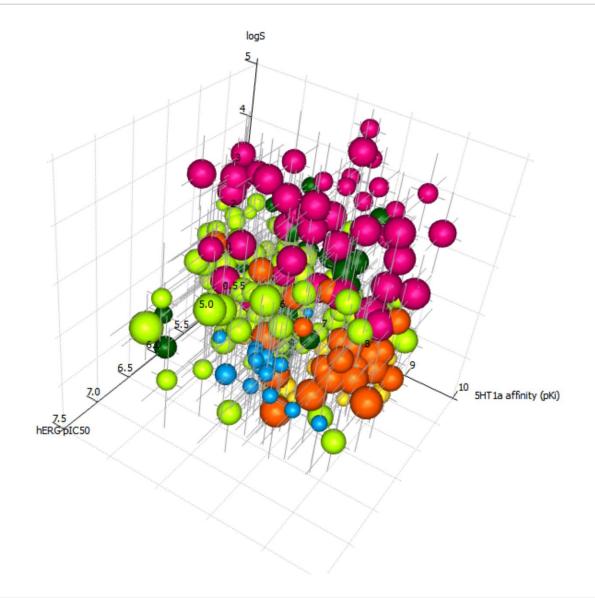
Other properties: BBB penetration



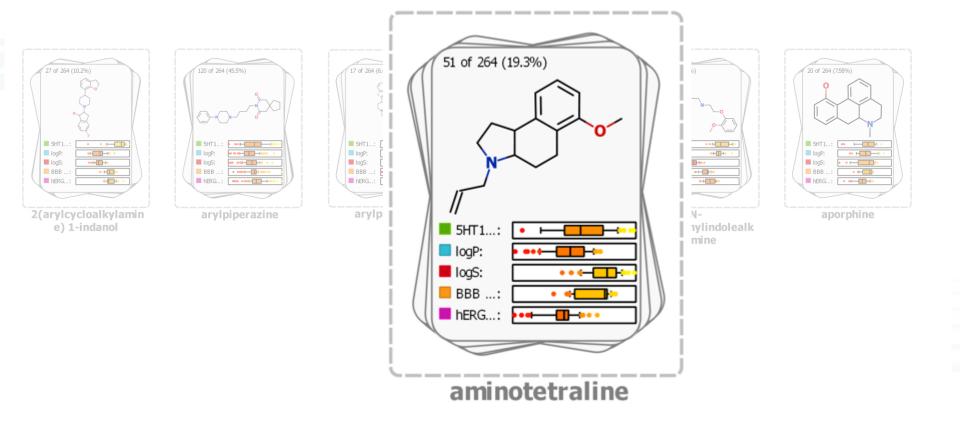
Other properties: hERG pIC50



Seeing them all together?

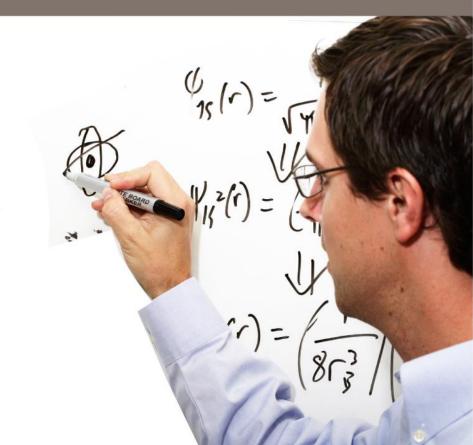


Seeing them all together



Card View[™]

Drug Discovery Data



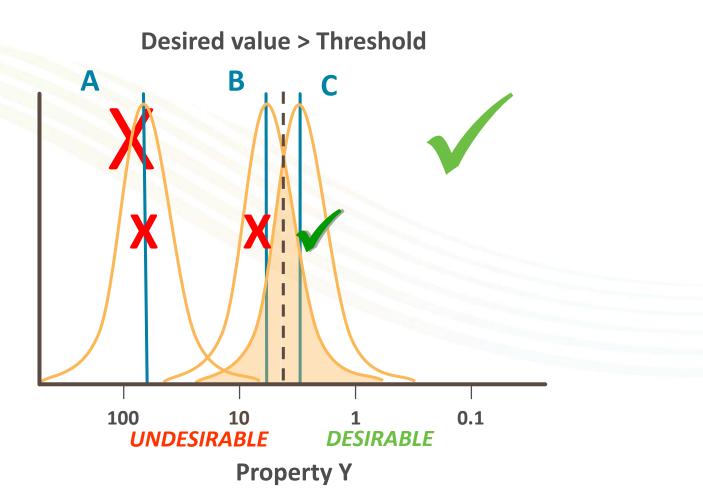
Data in drug discovery

- What's certain?
 - We know some simple properties of our compounds
- What's not so certain?
 - In vitro/In vivo measurements
 - o experimental variability
 - In silico predictions
 - o statistical error
 - Inference/translation

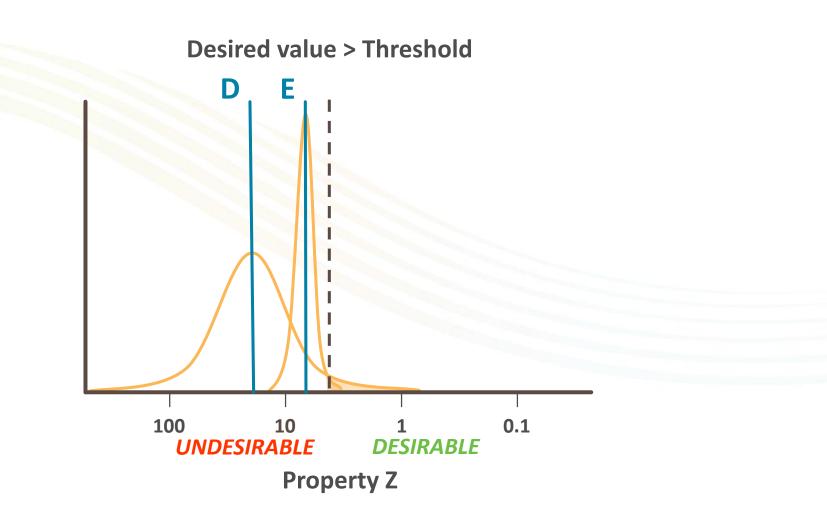
The Challenges: Uncertain data

- So what does that mean...
- A good RMSE for logS (solubility) is 0.6
- Assuming normal distribution this means that when we have a logS value of 2 (that's 100µM) then
 - 68% of the time this represents an actual value between 1.4 and 2.6 (25μM to 400μM)
 - 95% of the time this represents an actual value between 0.8 and 3.2 (6µM to 1.6mM)
 - 99% of the time this represents an actual value between 0.2 and 3.8 (1.6µM to 6.3mM)

Importance of Uncertainty



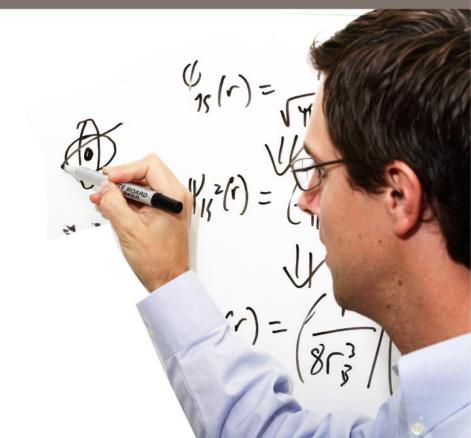
Importance of Uncertainty



The Challenges: ...and one more thing

- We probably have quite a few properties we need to optimise!
 - Each will have their own uncertainty
 - Each will have its own criteria we'd like to achieve
 - Each will have its own level of importance relative to the other properties

Multi-Parameter Optimisation

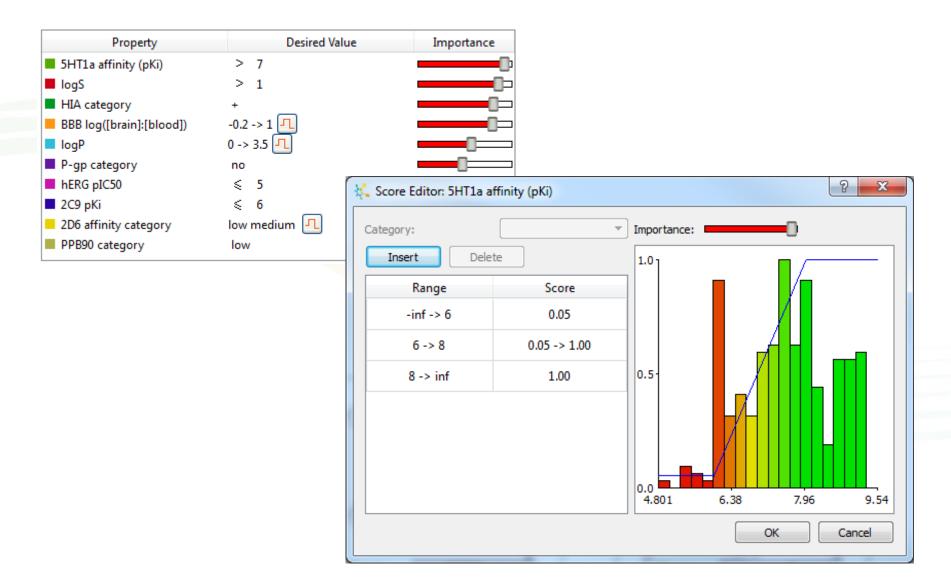


Back to our 5HT1a library

• Example criteria we might like to achieve for an ideal compound

Property	Desired value	Importance
Potency (pK _i)	> 7	High
logS (log μM)	> 1	High
Human Intestinal Absorption (category)	+	High
BBB log([brain]:[blood])	-0.2 -> 1	High
logP	0 -> 3.5	Medium
P-gp (category)	No	Medium
hERG pIC50	≤ 5	Medium
2C9 pK _i	≤ 6	Low
2D6 affinity (category)	Low/Medium	Low
Plasma protein binding (category)	Low	Low

Putting it all together (MPO): Probabilistic Scoring* – Scoring Profile

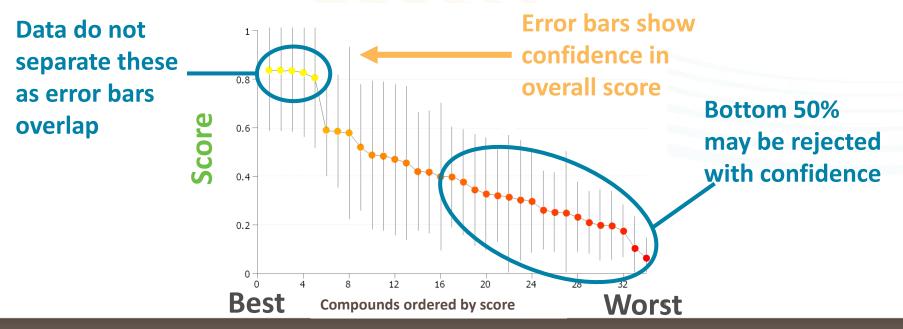


© 2015 Optibrium Ltd. * Segall *et al.* (2009) Chem. & Biodiv. **6** p. 2144

Multi-parameter Optimisation Probabilistic Scoring*

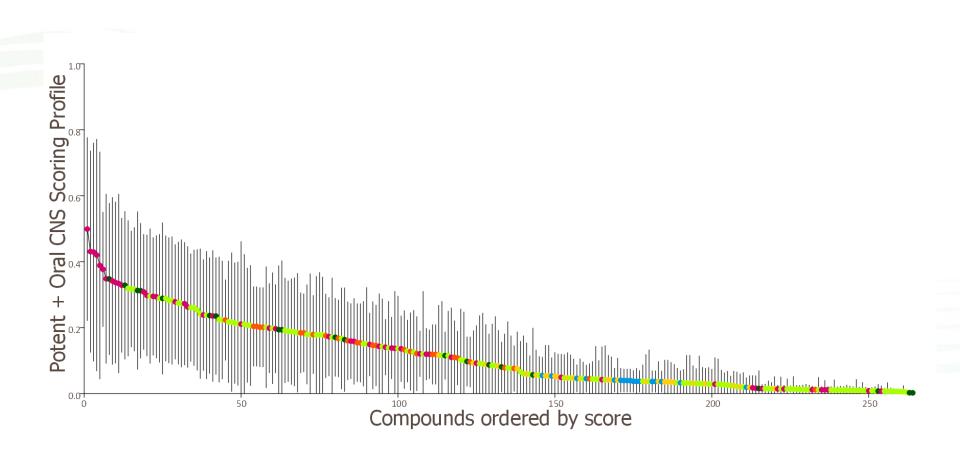
- Property data
 - Experimental or predicted
- Criteria for success
 - Relative importance
- Uncertainties in data
 - Experimental or statistical

- Score (Likelihood of Success)
- Confidence in score

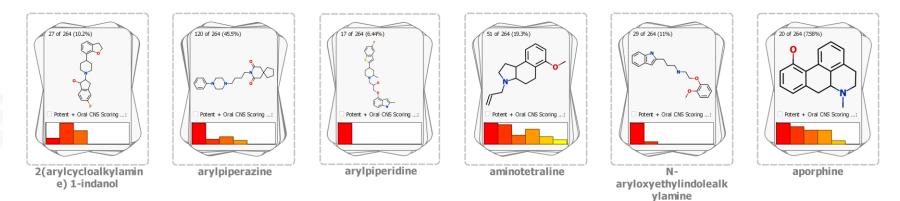


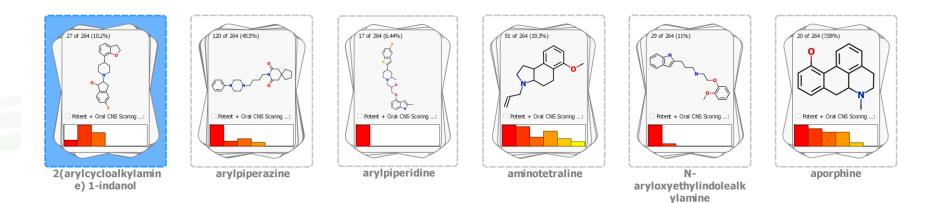
© 2015 Optibrium Ltd. *M.D. Segall (2012) Curr. Pharm. Des. **18**(9) pp. 1292-1310

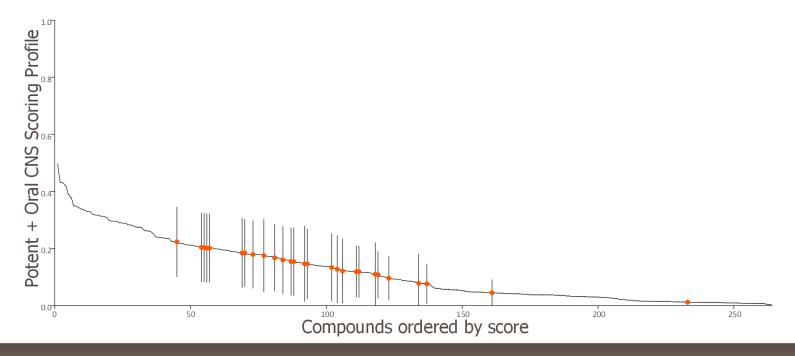
Snake plot for complete library

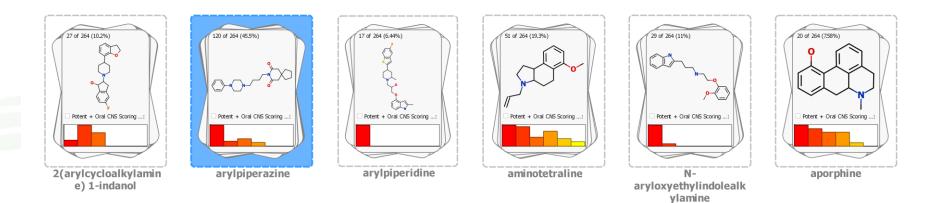


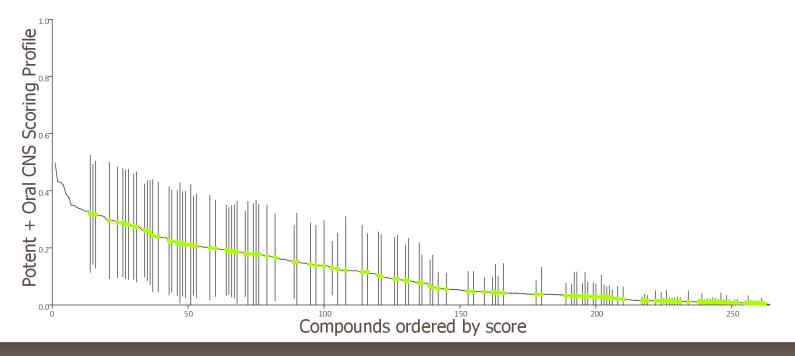
Stacks for each chemistry type show distribution of scores

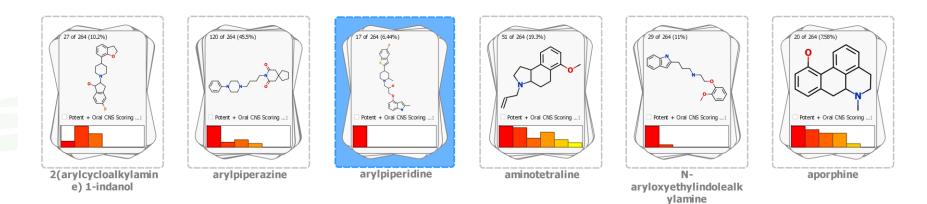


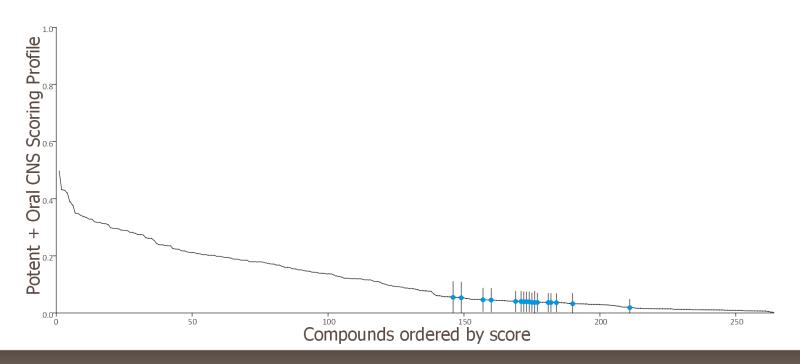


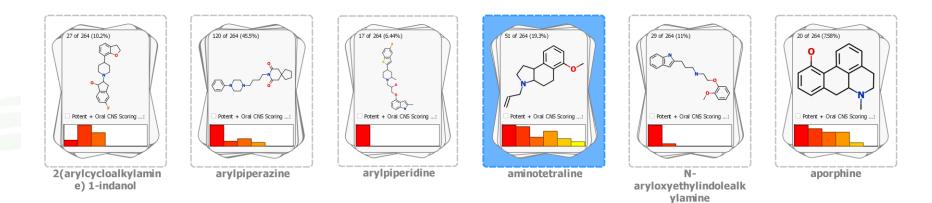


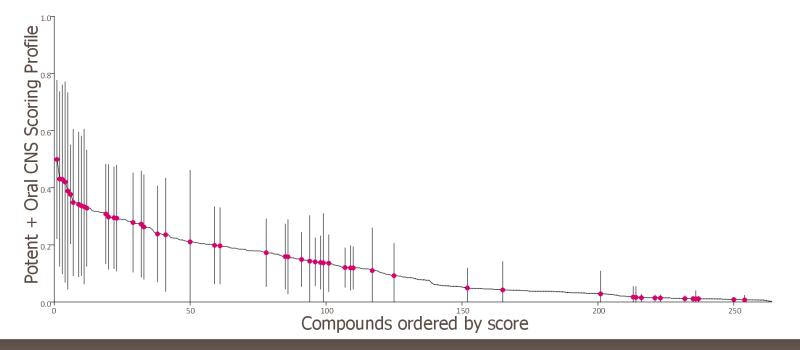




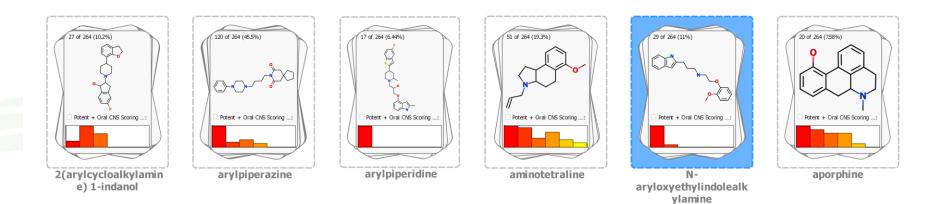


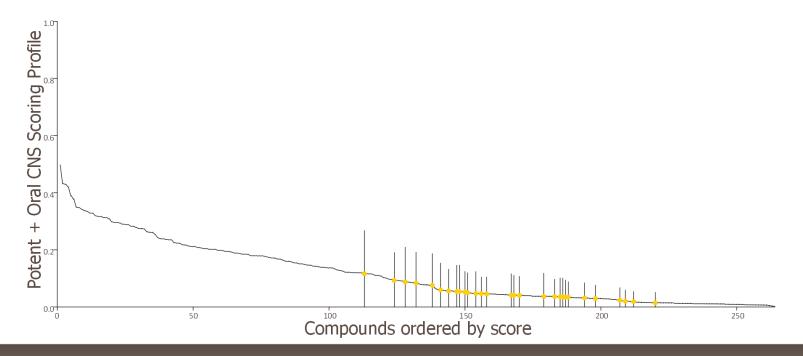




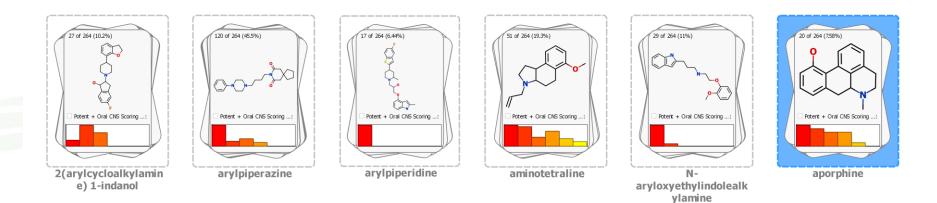


Each chemistry in turn

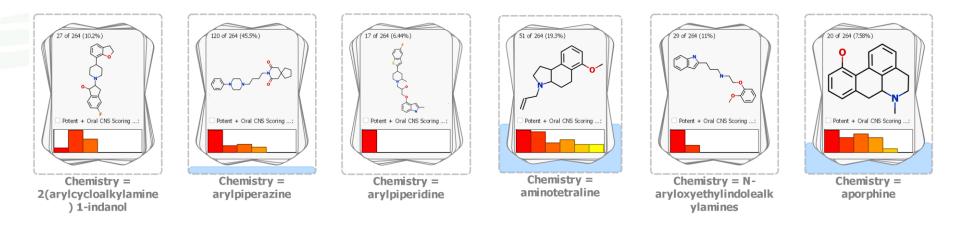




Each chemistry in turn

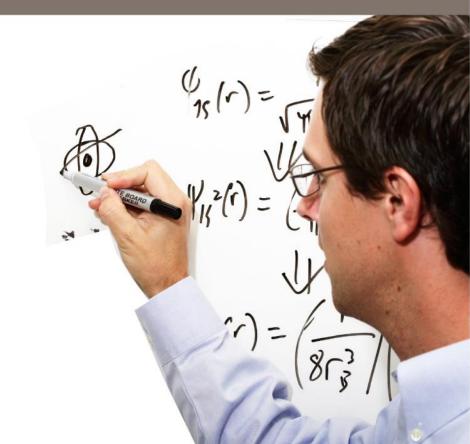


An appropriate selection?



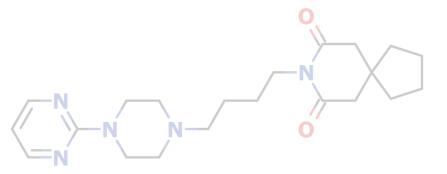
(N.B. There are 2.77 x 10⁵⁴ possible ways to select 50 compounds)

Using Data Visualisation to Drive Optimisation

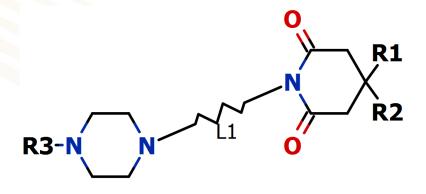


Focusing on the arylpiperazines

• One subset of these are Buspirone analogues

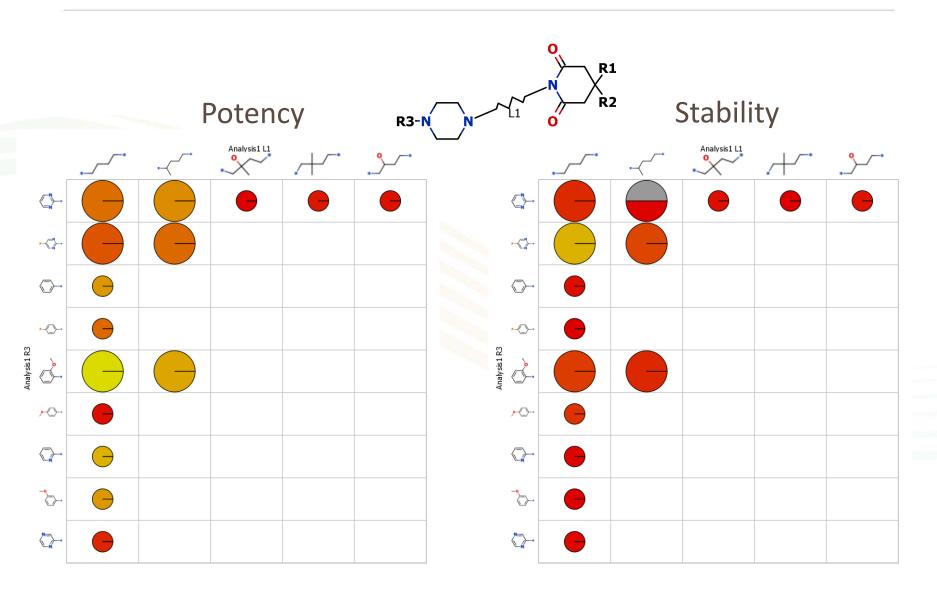


- Measured potency with pk_is between 5.8 and 8.7
- Measure stability (CYP3A4 half-life) between 3 and 80 minutes

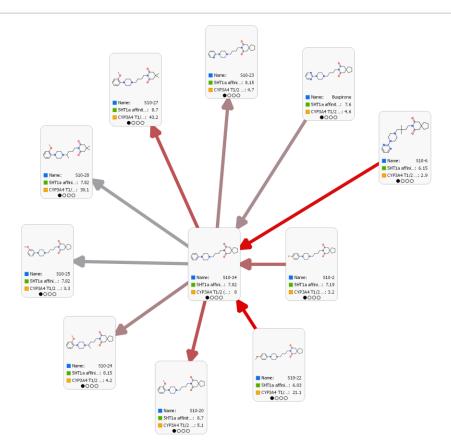


• 20 analogues

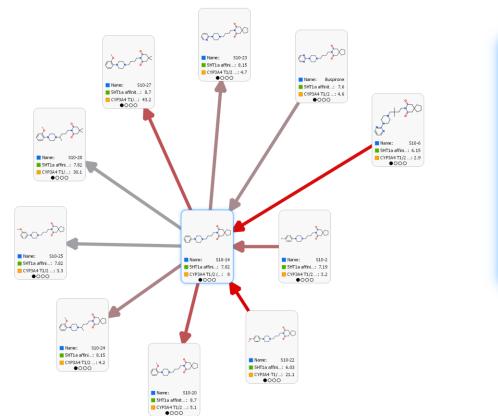
SAR tables

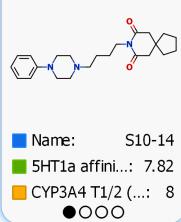


Activity neighbourhood

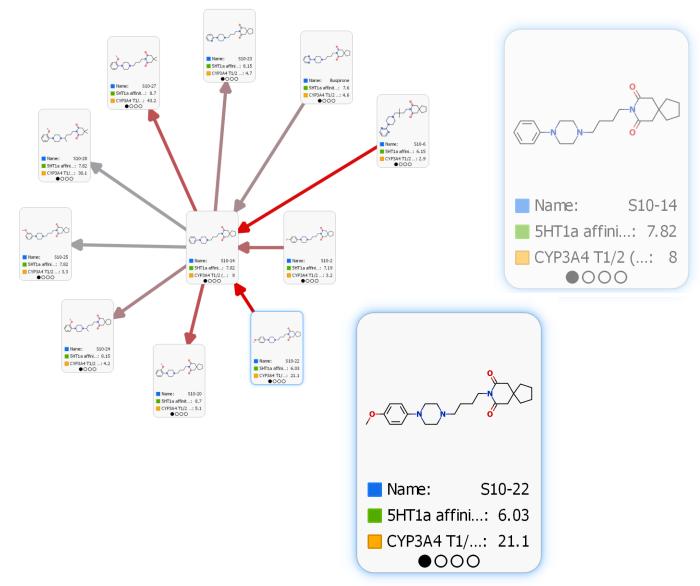


Activity neighbourhood Good potency, poor stability

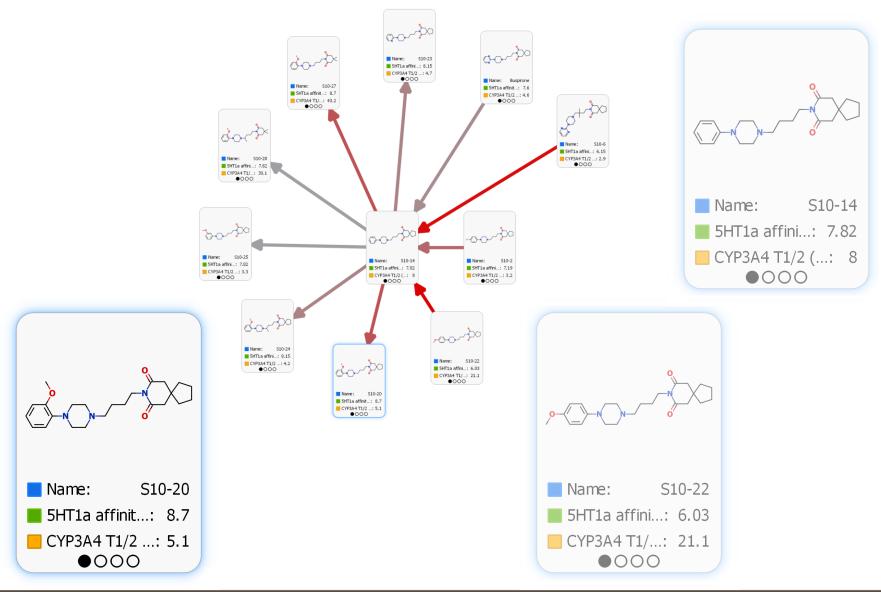




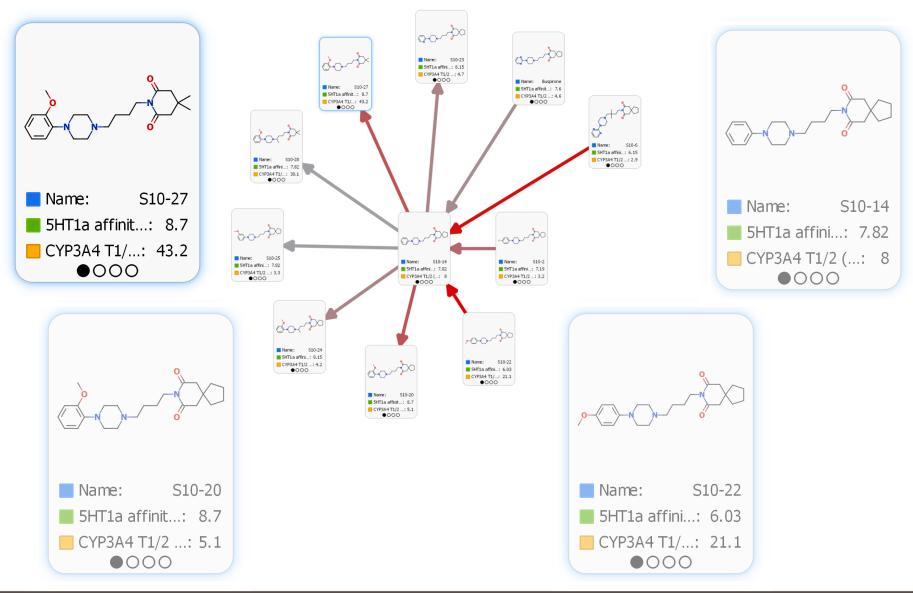
Activity neighbourhood Good stability, poor potency



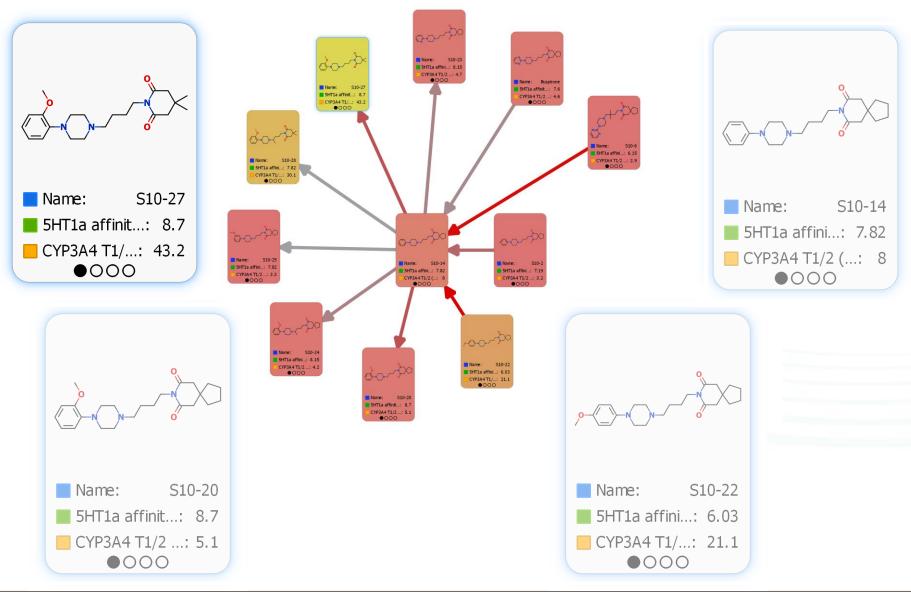
Activity neighbourhood Good potency, poor stability



Activity neighbourhood Best of both worlds



Activity neighbourhood Best of both worlds

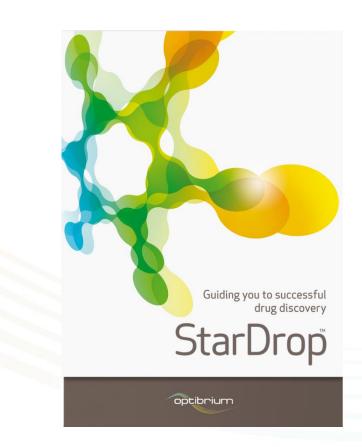


Conclusions

- It is very often the network of inter-relationships between compounds that matter
 - These often influence the creation of the next compound
- The way we perceive our compounds depends upon those around it
 - Timing: have we explored the surrounding chemical space thoroughly enough to adequately evaluate a series?
 - Property data: do we have data of sufficient quality to confidently distinguish the good compounds?
- Visualisations that collapse or remove that network relationship and context always have the potential to bias our perception of the data.

Acknowledgements

- Matt Segall
- Peter Hunt
- Chris Leeding
- James Chisholm
- Hector Garcia Martinez
- Alex Elliott
- Sam Dowling
- Nick Foster



- Exhibition booth #417/516
- CINF 162: Modeling ABC transporters as potential DILI targets Matt Segall
 - Weds 19 August 15:50 16:10 : Room 103