

Confidently Targeting High Quality Hits from High-Throughput Screening

ACS Spring National Meeting. CINF, April 3rd 2017

Matthew Segall, Tamsin Mansley, Peter Hunt, Edmund Champness matt.segall@optibrium.com

Overview

- Goals of high-throughput screening (HTS) triage
- Mapping the chemical space of activity
- Understanding the activity landscape
- Targeting high quality hit series
- Conclusions

Goals of HTS Triage

Goals of HTS triage

- One or more active series
 - Diversity is beneficial to provide backup series
- Good structure-activity relationships in series
 - Opportunities for optimisation
- High quality starting points for hit-to-lead
 - Appropriate physicochemical properties
 - Access to good absorption, distribution, metabolism and excretion (ADME) properties
 - Avoid frequent hitters (false positives) and high risk functionalities

Mapping the Chemical Space of Activity

Example Screening Library

Distribution of Activity

Inhibition (%)

	Mean	Max	Min	SD
Inhibition (%)	31	100	-17	24

2017 Optibrium Ltd. 7

Identifying Hits

Hit (>80% Inhibition) • Miss •

Understanding the Activity Landscape

Activity Landscapes

- All-by-all comparison
 - Identify groups of 'similar' compounds
- 'Rough' regions
 - large changes in activity result from small changes in structure
 - Interesting SAR
- 'Flat spots'
 - Limited opportunity for optimisation of activity
 - Opportunity to optimise different property without having negative impact on activity

Targeting High Quality Hit Series

What Does "High Quality" Mean?

- Low molecular weight?
 - More room for optimisation
- Low logP?
 - Better opportunity for optimisation
 - Reduce risk of off-target effects
 - Better chance of good solubility/permeability
- Avoid pan-assay interference compounds (PAINS)*?
 - Maybe promiscuous binders
 - Undesirable functionalities
- Appropriate ADME properties
 - Depends on project's therapeutic objectives

Guiding Decisions in Compound Optimisation Multi-parameter optimisation

Identify chemistries with an optimal balance of properties

- Quickly identify situations when such a balance is not possible
 - -Fail fast, fail cheap
 - -Only when confident
 - -Avoid missed opportunities

No good drug

Filtering

Sources of Uncertainty

Experimental variability

Statistical uncertainty, e.g. logP

- Relevance, e.g. PAINS*
 - Many compounds with PAINS alerts are not frequent hitters
 - Several successful drugs contain PAINS alerts

*Capuzzi et al. JCIM DOI: 10.1021/acs.jcim.6b00465

Probabilistic Scoring

Scoring Profile

Desirability Functions

Inhibition (%)

61

22

-17

Probabilistic Scoring

- Property data
 - Experimental or predicted
- Criteria for success
 - Relative importance
- Uncertainties in data
 - Experimental or statistical

Score (Likelihood of Success)

Confidence in score

Data do not separate these as error bars overlap

Bottom 50% may be rejected with confidence

Mapping Activity vs Score

Mapping Activity vs Score

Compound Selection

Comparison with Filters

No PAINS hits

Scoring Selection

ADME and Potency Profile

ADME and Potency Profile Selection

Comparing Selection Strategies

Inhibition (%) > 80 MW < 300 logP < 3 No PAINS hits

Simple Profile

ADME + Potency Profile

Conclusions

- When prioritising compounds/series from HTS, we should consider:
 - Activity
 - SAR of active series
 - Quality of hits
 - Novelty

- Be careful of 'hard' filters
- Optimise the balance of properties appropriate for your project
- Consider the uncertainties in your data avoid missed opportunities
- Publications can be downloaded from www.optibrium.com/community
- For more information, please visit Booth #1420, go to <u>www.optibrium.com/stardrop</u> or contact <u>info@optibrium.com</u>

Acknowledgements

Colleagues at Optibrium, including:

- Chris Leeding
- James Chisholm
- Nick Foster
- Alex Elliott
- Fayzan Ahmed
- Rasmus Leth
- Coran Hoskin
- Mario Öeren
- Aishling Cooke

