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Goals of HTS triage

e One or more active series

— Diversity is beneficial to provide backup series

e Good structure-activity relationships in series

— Opportunities for optimisation

e High quality starting points for hit-to-lead
— Appropriate physicochemical properties

— Access to good absorption, distribution, metabolism and excretion
(ADME) properties

- Avoid frequent hitters (false positives) and high risk functionalities



Mapping the Chemical Space of Activity
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Example Screening Library
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Distribution of Activity
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Identifying Hits
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Understanding the Activity Landscape
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Activity Landscapes

e All-by-all comparison

- ldentify groups of ‘similar’
compounds

e ‘Rough’ regions
- large changes in activity result
from small changes in structure

- Interesting SAR

e ‘Flat spots’

- Limited opportunity for
optimisation of activity

- Opportunity to optimise different
property without having negative
impact on activity
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Identifying Regions with Interesting SAR
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M.D. Segall et al. (2015) Drug Discov. Today 20(9) pp. 1093-1103



Identifying Regions with Interesting SAR
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Identifying Regions with Interesting SAR
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Identifying Regions with Interesting SAR
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Targeting High Quality Hit Series
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What Does “High Quality” Mean?

e Low molecular weight?

— More room for optimisation

e Low logP?
— Better opportunity for optimisation

— Reduce risk of off-target effects
— Better chance of good solubility/permeability

e Avoid pan-assay interference compounds (PAINS)*?

— Maybe promiscuous binders
— Undesirable functionalities

e Appropriate ADME properties

— Depends on project’s therapeutic objectives

*Baell and Holloway, J. Med. Chem. 2010 53(7) pp. 2719-2740



Guiding Decisions in Compound Optimisation

Multi-parameter optimisation

e Identify chemistries with an
optimal balance of properties

e Quickly identify situations
when such a balance is not
possible

—Fail fast, fail cheap
-Only when confident

-Avoid missed opportunities

Hit Drug
A Potency
Safety
Absorption
(QV
£ | solubility
8 Metabolic
a stability
>
Property 1
Potency
A
Safety
N Absorption
2
)
3 Metabolic
al stability
>

Property 1

No good drug

M.D. Segall (2012) Curr. Pharm. Des. 18(9) pp. 1292-1310



Filtering

Inhibition
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Sources of Uncertainty

e Experimental variability " sp=10 ATERE
0.04 ] (]
> (TN I
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Inhibition (%)
e Statistical uncertainty, e.g. logP .-
RMSE =0.44

e Relevance, e.g. PAINS*

Calculated logP

- Many compounds with PAINS alerts

are not frequent hitters 2] o
- Several successful drugs contain B , : . . .
-4 -2 0 2 4 6
PAINS alerts Observed logP

*Capuzzi et al. JCIM DOI: 10.1021/acs.jcim.6b00465
Segall and Champness (2015) J. Comput.-Aided Mol. Des. 29(9) p. 809




Probabilistic Scoring
Scoring Profile

Property Desired Value Importance
Inhibition (%) 80 -> inf —
N logP -inf -» 3 —
MW -inf -> 31}1} —
B PAINS count 0 [ —

Desirability Functions
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M.D. Segall (2012) Curr. Pharm. Des. 18(9) pp. 1292-1310



Probabilistic Scoring

* Property data
- Experimental or predicted

e Criteria for success e Score (Likelihood of Success)
- Relative importance i

e Uncertainties in data

- Experimental or statistical

Data do not . ‘ | ‘
separate these (1
as error bars ° %
overla U T Bottom 50%
g o “\N‘ may be rejected
A o Toe with confidence
Best Compounds ordered by score WO rSt

M.D. Segall (2012) Curr. Pharm. Des. 18(9) pp. 1292-1310



Mapping Activity vs Score
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Mapping Activity vs Score

Property
Inhibition (%)
M logP
MW
B PAINS count

Desired Value
80 -> inf
-inf-» 3[11]
-inf -> 3001
Cinf -> 1

Importance

——
—
——
R —

>0.8
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Compound Selection

>0.8

Property Desired Value Importance
Inhibition (%) 80 -> inf —
B logP -inf -> 3 —
o MW -inf - 30[:1 ——
B PAINS count Cinf - 1 —
400 600 800 1000

Compounds ordered by score
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Comparison with Filters

Filtered Compounds Scoring Selection

Inhibition (%) > 80 Property DedVaIue Importance
Inhibition (3] 80 > inf |71 ——
MW < 300 Only 4 M logP -inf -» 3 —
logP <3 compounds! o MW -inf-> 300 [71] e—
No PAINS hits W PAINS count -inf-> 111 ——
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ADME and Potency Profile
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>0.4
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ADME and Potency Profile Selection
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Comparing Selection Strategies

Filtered Compounds Simple Profile ADME + Potency Profile

I N h i b itio N (%) > 80 Property Desired Value Importance i Property e Importance
Inhibition (%) 80 -> inf — o = —
MW < 300 M logP -inf -» 3 — : oy —r
MW -inf -> 300 [ | g i—
|Og P < 3 B PAINS count -inf - 1 | ;EC’Z“:"'WEM ‘iwm:d‘um =
pKi < [l m—
No PAINS hits S onenonn - —
W BEE - 0
1 BBE log([brain][bload]) < D5 I
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Conclusions

e When prioritising compounds/series from HTS,
we should consider:

- Activity
— SAR of active series !
- Quality of hits StarDrop

S e

e |n assessing quality:

— Be careful of ‘hard’ filters
- Optimise the balance of properties appropriate for your project
— Consider the uncertainties in your data — avoid missed opportunities

e Publications can be downloaded from
www.optibrium.com/community

e For more information, please visit Booth #1420, go to
www.optibrium.com/stardrop or contact info@optibrium.com
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