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Automatic Model Generation Process
The rapid design-test-redesign cycles of modern drug discovery and the demand for fast model (re)building whenever data becomes available have given 
rise to a trend to develop computational algorithms for automatic model generation. Automatic modelling processes allow computational scientists to 
explore large numbers of modelling approaches very efficiently and make QSAR/QSPR model building accessible to non-experts. 

In this poster we will present an automatic model generation process for 
building QSAR models. The stages of the process that ensure models are 
built and validated within a rigorous framework are:  

� Splitting data into training, validation and test sets (by cluster analysis)

� Descriptor calculation and filtering  (2D SMARTS descriptors, whole 
molecular properties and user’s imported descriptors)

� Application of modelling techniques (PLS, Radial Basis Functions with 
genetic algorithm, Gaussian Processes (GP) [1])

� Selection of the best model (performance on the validation set is used as 
criterion) and evaluating it on the test set  

This algorithm is implemented in the StarDrop environment for decision 
support within drug discovery and is referred  to as the Auto-Modeler.  

A model can be used to predict values for new compounds and together 
with the Glowing Molecule visualisation tool can help to interpret the 
SAR for a chemical series and to guide redesign of compounds to overcome 
liabilities. 

Building QSAR Model to Guide Compound Design

QSAR model for Target X affinity. We applied the Auto-Modeler to a set of 138 
compounds with pKi data from screening against ‘Target X’, the therapeutic target for a 
drug discovery project. The best QSAR model of Target X affinity achieved R²=0.96 and 
RMSE=0.23 log units on validation set and R²=0.95 and RMSE=0.29 log units on the test 
set.

Predicting affinity. Additional experimental affinity data was subsequently gathered for 
10 new compounds.  Affinity values predicted by the model correlate very well with the 
experimental values for these new compounds (R²=0.98, RMSE=0.22).

Scoring against project profile. We also used proprietary ADME QSAR models from 
StarDrop to predict a range of ADME properties for the set of 10 compounds. The 
Probabilistic scoring functionality from StarDrop allows all the compound data to be 
rapidly integrated to prioritise compounds. A scoring profile, incorporating all the project 
criteria and their relative importance,  has been defined for an orally bioavailable, potent 
molecule for a non-CNS target. This includes the predicted potency against Target X. The 
resulting scores estimate each compound’s likelihood of success against the project 
profile. As seen from Fig. 3, the top scoring compound has a relatively low potency (light 
orange bar in histogram), while some compounds have high affinity for Target X but poor 
balance of ADME properties. 

Glowing Molecule. This visualisation tool highlights regions of a molecule that most 
strongly influence a predicted property or activity. Examples in Fig. 4 show that a para-
substituted phenyl contributes positively to the predicted affinity for Target X (red ‘glow’).  

Design. Compound in row 5 has a best balance of ADME properties but low affinity for 

Figure 1. Stages of the Auto-Modeler™.
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Figure 3. Scoring compounds and using the Glowing 
Molecule and QSAR model  predictions to guide compound 
design.

‘Manual’ Models versus ‘Automatic’ 
We applied this automatic process to data sets for blood-brain barrier penetration and aqueous solubility and compared the resulting automatically 
generated models with models developed ‘manually’ by computational chemists by test them on new external data. The results demonstrate the 
effectiveness of the automatic model generation process for two types of data sets commonly encountered in building ADME QSAR models, a small set 
of in vivo data and a large set of physico-chemical data (see [2] for details of the study). 

Blood-brain barrier penetration (logBB)

� Data set of 151 compounds with logBB values derived from various sources. ‘Manual’ model 
achieved R²=0.73 and RMSE=0.36 log units on internal test set.  

� The best automatic model is produced by GP technique with nested sampling. It achieved 
R²=0.72 (val),  R²=0.66 (test) and RMSE=0.44 log units on combined test and val sets.

� External test data – 143 compounds from ‘Abraham’ set [3] not present in the initial set: 

�The low R2 for both models on the external test set is due to the small range of experimental 
values represented therein. However, the RMSEs of both models are good and comparable.

Aqueous solubility (logS, S in µM)

� Data set of 3313 compounds with experimental solubility values from Syracuse database.  ‘Manual’ 
model achieved R²=0.82 and RMSE=0.79 log units on the test set.  

� The best automatic model is produced by GP-2DSearch technique. It achieved R²=0.85 (val),  
R²=0.84 (test) and RMSE=0.69 log units on combined test and val sets.

� External test data – 564 compounds from ‘Huuskonen’ set [4] not present in the initial set:

Design. Compound in row 5 has a best balance of ADME properties but low affinity for 
Target X. Addition of a para-substituted phenyl improves predicted potency. The new 
compound is predicted to have a better balance of potency and ADME properties.  

Figure 4. Glowing Molecule examples suggest 
that a para-substituted phenyl has positive 
influence to the high affinity.

Figure 5. Interactive design of a new compound. Adding a para-substituted 
phenyl  improved affinity to Target X and increased the total score. 

Figure 2. Predicted logS for ‘Huuskonen’ set by 
(a) manual model and by (b) automatic model.
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Model Desc % pred within 
±0.4 log unit

% pred within 
±0.8 log unit

R² r²corr RMSE

manual 7 62.9 93.0 0.39 0.44 0.44

automatic 162 63.6 90.9 0.27 0.36 0.49

Model Desc % pred within 
±0.7 log unit

% pred within 
±1.4 log unit

R² r²corr RMSE

manual 108 39.9 70.9 0.68 0.80 1.28

automatic 166 54.1 85.9 0.82 0.86 0.96
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Conclusions

� We have described an automatic model generation process for QSAR modelling implemented in the Auto-Modeler functionality of StarDrop.

� We have applied the Auto-Modeler to build blood-brain barrier penetration and aqueous solubility models. In the case of blood-brain barrier penetration, 
it can be seen that the automatically built model reports a slightly higher but comparable RMSE to the original manual model. For the aqueous solubility, 
the automatically built model reports a lower RMSE, i.e. higher accuracy, than the manual model. We have demonstrated that the performance of the 
automatic model generation process is robust and comparable to manual model building. Additionally, it is much quicker than manual modelling and can 
be applied by non-experts.

� The case study demonstrates how building a QSAR model can help to understand SAR for a chemical series and to redesign compounds to overcome 
liabilities. We have built a QSAR model of target activity and used this, combined with Glowing Molecule visualisation, to guide the design of a new 
compound that is predicted to have a better balance of potency and ADME properties.   
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