

N- and *S-*Oxidation Model of the Flavin-containing MonoOxygenases

Peter J. Walton, Mario Öeren, Peter Hunt, Matthew Segall

© 2019 Optibrium Ltd Optibrium™, StarDrop™, Auto-Modeller™, Card View™, Glowing Molecule™ and Augmented Chemistry™ are trademarks of Optibrium Ltd.

Background

- Flavin-containing MonoOxygenase (FMO)
- 5 active isoforms (FMO1–5)
 - FMO3 major isoform found in adult liver
- Enzyme class found in multiple tissues
- Phase I enzyme involved in compound metabolism
- Metabolites commonly subject to Phase II metabolism

Role of Flavin-containing Monooxygenases

- Works in conjunction with Cytochrome P450 in Phase I metabolism
- FMO3 polymorphism responsible for trimethylaminuria
 - Decreased rate of metabolism leads to increased drug exposure
- Variety of reaction types possible:
 - N/S-Oxidation ≈ 99% cases
 - Demethylation, Bayer-Villiger Oxidation, Desulfuration

N/S-Oxidation

- N/S-Oxidation involves transfer of Oxygen from peroxide of FAD-OOH
- Debate in the literature regarding mechanism:
 - Radical
 - S_N2
- Our focus:
 - Better understanding of the mechanism substrate oxidation by FAD peroxide.

Model System

Simplifying the System

- Full FAD too large for practical calculations
- "Tail" buried in groove and does not interact with substrate
- Compared bond stretching of the full FAD-OOH vs the simplified analogue
- Behaviour of simplified system at peroxide site analogous to larger molecule

FAD ——Simplified FAD

Finding the Transition State

- We searched for both $S_N 2$ and radical transition state
- Despite multiple attempts we were unable to find a transition state for a radical mechanism
- Transition state found for closed-shell system, S_N2 mechanism

Analysis of the $S_N 2$ Mechanism

Thermodynamic Feasibility

B3LYP/def2-SVP QTAIM

Electron Density – Reactant

Electron Density – Pre-transition State

Electron Density – Transition State

Electron Density – Post-transition State

Electron Density Comparison of reactant and post-transition state structures

Properties Derived from Electron Density

Charge Analysis

Hirshfeld Charge

Charge Analysis

Charge Analysis

Charges seen in transition state more consistent with S_N^2 mechanism

Hirshfeld Charge

Orbital Investigation

- Orbital shape and orientation conducive to successful interaction
 - Lone pair of trimethylamine (TMA) large component of HOMO
 - O–O σ* component of the LUMO of FAD–OOH accessible

Full $S_N 2$ Mechanism

Constrained Optimisation

Fixed N–O bond length = 5.00 Å

Pre-optimised Structure

Post-optimised Structure

Constrained Optimisation

Fixed N–O bond length = 1.85 Å

Pre-optimised Structure

Post-optimised Structure

Constrained Optimisation

Fixed N–O bond length = 1.70 Å

Pre-optimised Structure

Post-optimised Structure

Full Concerted Mechanism

• Hydrogen transfer during optimisation shows no secondary local minima

Application to Other Molecules

Summary

- Identified transition state for closed-shell (S_N2) mechanism
- Extensive tests further support S_N2 mechanism
- Modelling of reaction coordinate provides a greater understanding of the N/S-Oxidation process
- Further tests indicate that this mechanism is applicable to larger substrates
- This enables further efforts to predict FMO metabolism

Thank You!

- Mario Öeren
- Peter Hunt
- Matthew Segall

• Jonathan Hirst

