Gaussian Processes: A method for automatic QSAR and ADME modelling

Olga Obrezanova, Joelle M.R. Gola, Matthew D. Segall

22 August 2007

Copyright © 2007 Galapagos NV

- Gaussian Processes
 - > A powerful computational modelling technique
- Application predictive ADME and QSAR modelling (ADME absorption, distribution, metabolism and excretion)
 - > New techniques for finding method parameters
 - > Examples and comparison with other methods
- Automatic modelling process

- Machine learning method based on Bayesian approach.
 Not widely used in QSAR and ADME field yet.
- Advantages:
 - Does not require a priori determination of model parameters.
 - Nonlinear relationship modelling.
 - > Built-in tool to prevent overtraining, no need for cross-validation.
 - Inherent ability to select important descriptors.
 - Provides uncertainty estimate for each prediction.
- Sufficiently robust to enable automatic model generation

• $D = \{Y, X\} - given data.$ We want to find function *f*:

Y=f(X)+noise.

• Bayesian rule

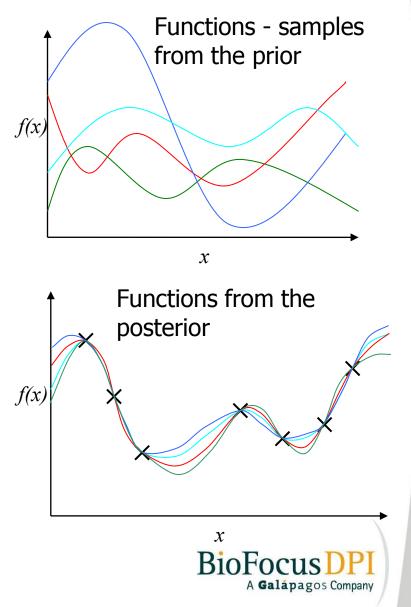
$$P(f \mid D) \propto P(D \mid f) P(f)$$

posterior

prior

4

- Prediction is a mean of posterior distribution.
- Gaussian Process defines a distribution over functions.



Gaussian Processes: Practical steps

Structure of functions determined by covariance (kernel) function:

 $\operatorname{cov}(f(\boldsymbol{x}), f(\boldsymbol{x}')) = C(\boldsymbol{x}, \boldsymbol{x}')$

 Distribution of functions (property values) is multivariate Gaussian with zero mean and covariance matrix

 $\boldsymbol{K} = \boldsymbol{C} + \boldsymbol{\theta}_3 \boldsymbol{I}$

> Hyperparameter θ_3 is a variance of noise present in the observed values.

Gaussian Processes: Hyperparameters

ARD covariance function

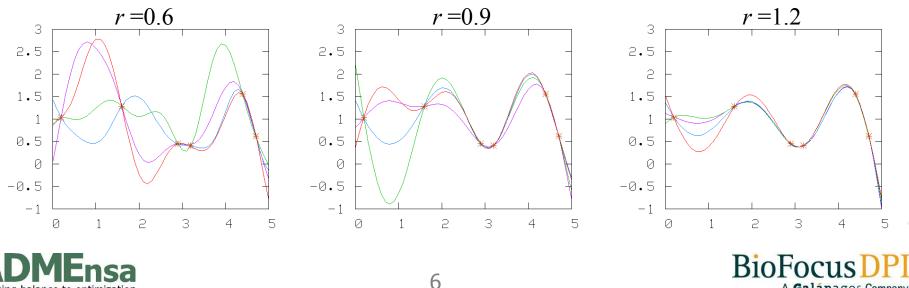
$$C(\mathbf{x}, \mathbf{x}') = \theta_1 \exp\left[-\frac{1}{2} \sum_{i} (x_i - x'_i)^2 / r_i^2\right] + \theta_2$$

automatic relevance determination

Control fit and smoothness via hyperparameters

 \succ θ_3 is a variance of noise in the observed values. Too small value leads to overfitting.

 \succ { r_i } are length scale parameters.



A Galapagos Company

Gaussian Processes: How to find hyperparameters?

- Use Bayesian inference in hyperparameters space.
 - Posterior for hyperparameters

 $P(\boldsymbol{\theta} \mid D) \propto P(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{\theta}) P(\boldsymbol{\theta})$

- > Full integration over all hyperparameters
- > Or choose most probable value θ that optimizes the marginal log-likelihood

$$\log P(\boldsymbol{Y} | \boldsymbol{X}, \boldsymbol{\theta}) = -\frac{1}{2} \log(\det \boldsymbol{K}) - \frac{1}{2} \boldsymbol{Y}^{t} \boldsymbol{K}^{-1} \boldsymbol{Y} - \frac{N}{2} \log 2\pi$$

Complexity penalty fit

• No need for cross-validation or validation set! Also prevents overtraining.

Gaussian Processes: Make predictions

- Want to make prediction y* at unseen (test) point x*.
- Predictive distribution is Gaussian with mean and variance:

$$\langle y^* \rangle = k^t K^{-1} Y$$

prediction
 $\sigma^{*2} = C(x^*, x^*) - k^t K^{-1} k$
Confidence in prediction

> k describes covariance of training and new points, $k_n = C(\mathbf{x}^*, \mathbf{x}^{(n)})$.

For test set points need to add noise variance to GP variance.

ADME and QSAR modelling:

Techniques for determining hyperparameters

Finding hyperparameters

• Optimize the marginal log-likelihood

$$\log P(\boldsymbol{Y} | \boldsymbol{X}, \boldsymbol{\theta}) = -\frac{1}{2} \log(\det \boldsymbol{K}) - \frac{1}{2} \boldsymbol{Y}^{t} \boldsymbol{K}^{-1} \boldsymbol{Y} - \frac{N}{2} \log 2\pi$$

- Conjugate gradient methods
 - Computationally demanding. Inversion of matrix NxN at each step, N is a number of compounds in the training set. Comp. cost O(N³).
 - The function has multiple maxima. Search can get trapped in a local maximum.
- Need to find simplified approaches.

Techniques for finding hyperparameters

"Fixed" values.

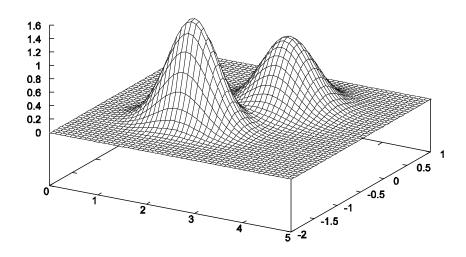
$$r_i = 4\sqrt{M}\,\sigma(\mathbf{x}_i), \quad \theta_2 = \sqrt{N}\sigma_{\mathbf{y}},$$

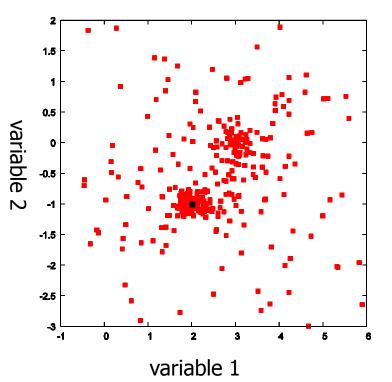
M is a number of descriptors. Search for θ_1 , θ_3 .

- Forward variable selection provides feature selection.
- Optimization by conjugate gradient methods (only length scales).
 - Length scales show which descriptors are most relevant.
- Nested sampling.
 - Search in the full hyperparameter space.
 - Search does not get trapped in local maxima.

- Method by John Skilling to estimate evidence and generate posterior samples. (http://www.inference.phy.cam.ac.uk/bayesys/Valencia.pdf)
- We want to find most probable hyperparameter values, i.e that give the maximum of the likelihood.
- Key idea:
 - > Sample uniformly from wide prior space of all hyperparameters.
 - Iteratively replace samples with low likelihood by new samples with high likelihood.
 - At the end of the process we have points corresponding to high likelihood values.

- 2 variables.
- Find maximum of likelihood:





BioFocus

A Galápagos Company

ADME and QSAR modelling:

Examples and comparison

- F. Burden, JCICS 2001, 41, 830-835.
- 245 ligands for the benzodiazepine receptor (in vitro binding affinities as pIC₅₀).
- 59 descriptors:
 - Randic and Kier-Hall indices (E-Dragon: www.vcclab.org),
 - > counts of atoms, rings and functional groups.
- Test set 15%.
 - > Burden's set split is not known to us.
 - Used set split based on uniform sample of Y values.

Benzodiazepine set: Results

Method	Desc	r² _{corr} (trn)	r ² _{corr} (test)	GP-Nest			
PLS	38(3)	0.32	0.53	on test set:			
GP-Basic	38	0.52	0.53	RMSE=0.46 R ² =0.63			
GP-FVS	15	0.52	0.54	$r^{2}_{corr} = 0.65$			
GP-Opt	9	0.62	0.51	← VCCLAB (www.vcclab.org)			
GP-Nest	38	0.68	0.65				
ASNN+kNN	36	0.73	0.64				
BRANN	39	0.75	0.71)			
GPmodel	39	0.76	0.66	Burden results			
GPlinear	39	0.78	0.71				

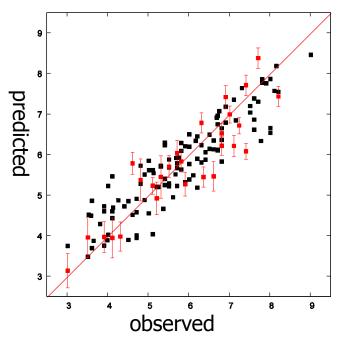
Training set - 208 compounds, test set - 37 compounds.

- Inhibition of human ether-a-go-go related gene by medication.
- 137 compounds with patch-clamp pIC₅₀ values.
- 166 descriptors:
 - > 2D SMARTS based + logP, PSA, charge, etc.
- Test set 20%.
 - > Set split based on clustering analysis (Tanimoto level = 0.7).

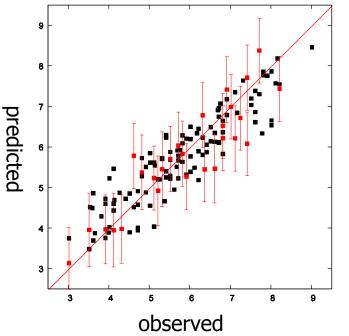
				GP-Opt
Method	Desc	R ² (trn)	R ² (test)	on test set:
PLS	166(2)	0.63	0.74	RMSE=0.6 R ² =0.81
GP-Basic	166	0.79	0.76	$r_{corr}^{2}=0.81$
GP-FVS	17	0.76	0.80	
GP-Opt	26	0.82	0.81	
GP-Nest	166	0.81	0.77	
ASNN+kNN	166	0.94	0.77	VCCLAB (www.vcclab.org)

Training set - 110 compounds, test set - 27 compounds.

Predicted pIC_{50} values versus observed with error bars. Training set in black. Test set in red.



- Original GP error bars, do not include experimental noise variance
- Applicability of the model

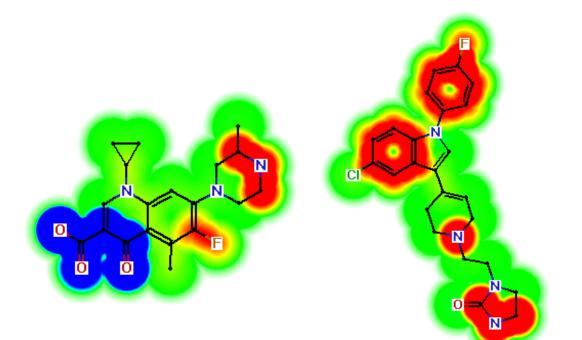


- Error bars include noise variance
- Confidence in prediction

hERG inhibition model: Descriptors

• Important features:

- Lipophilicity
- Negative charge
- Positively charged nitrogen at pH 7.4
- > Aromaticity index
- HB donor acceptor pairs separated by 6 bonds
- > Ketone
- > Amide



hERG pIC₅₀ obs. = 4.3

predicted = 3.99 ± 0.84

hERG pIC₅₀ obs. = 8 predicted = 7.88 ± 0.8

BioFocus

A Galapagos Company

Automatic modelling process

Automatic Model Generation Process

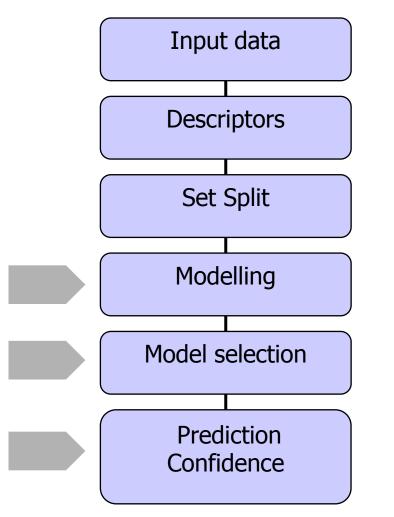


• User provides structures and property values.

• 2D SMARTS based descriptors and logP, flexibility, charge, PSA, etc. A user can import own descriptors.

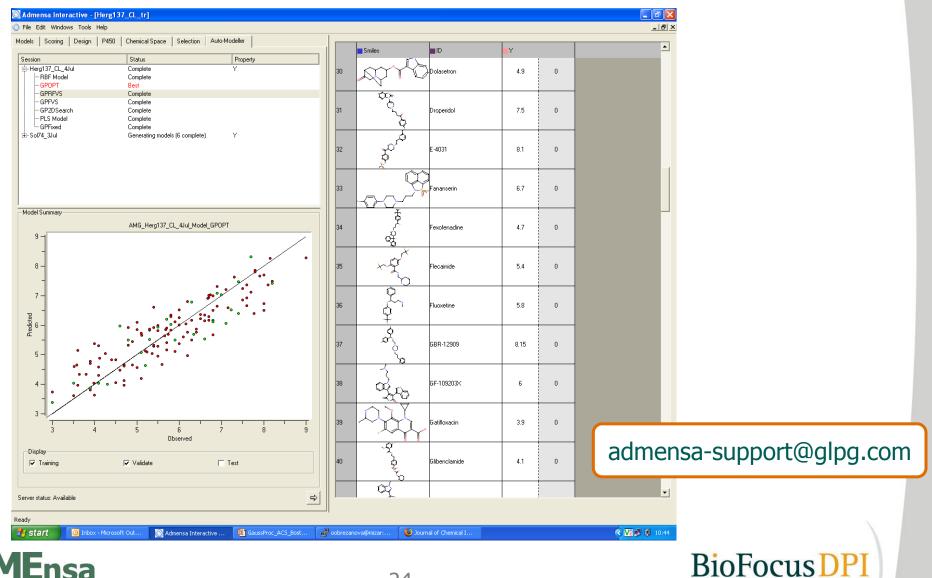
- Split into 3 sets:
 - training (building a model),
 - validation (model selection),
 - test (independent).
- Clustering by structural similarity or Y based. Or user's own split.

Automatic Model Generation Process



- Modelling continuous data:
 - PLS
 - Gaussian Processes (5 techniques)
 - Radial Basis Functions + GA
 - categorical data:
 - Decision trees (C4.5)
- Best model selection is based on performance of validation set.
- Estimation of uncertainty for each prediction.

ADMEnsa Interactive. Auto-Modeler.



A Galápagos Company

Bringing balance to optimization

- Gaussian Processes is a powerful nonlinear modelling technique:
 - > No *a priori* determination of model parameters.
 - > Built-in tool to prevent overtraining, no need for cross-validation.
 - > Works well for a big pool of descriptors.
 - Identifies relevant descriptors.
 - Uncertainty with each prediction.
- Application to building QSAR and ADME models. New techniques for determining model parameters.
- Automatic model generation process accessible through an intuitive desktop environment.

- The Gaussian Processes Website. www.gaussianprocess.org
- D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
- C. Rasmussen, C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.

• Obrezanova et al. *J. Chem. Inf. Model.* E-publication ahead of print, 28 June, 2007.

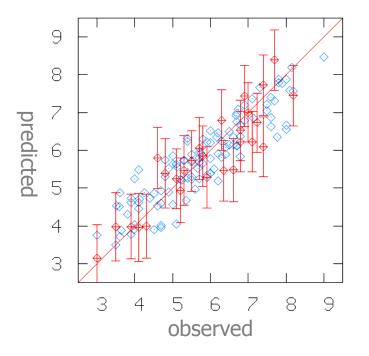
- Gábor Csányi (Cavendish Laboratory, University of Cambridge)
- Joelle Gola
- Matthew Segall
- Ed Champness
- Chris Leeding
- Andre Kramer

Spare slides

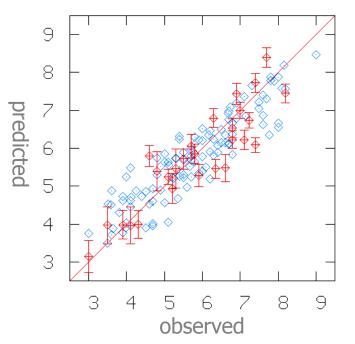
Method	Desc	R ² (trn)	R ² (test)	Time (min)	GP-Opt
PLS	166(2)	0.63	0.74	0.2	on test set: RMSE=0.6
RBF-GA	21	1	0.77		$R^2 = 0.81$
GP-Basic	166	0.79	0.76	2.3	R ² corr=0.8
GP-FVS	17	0.76	0.80	19	
GP-Opt	26	0.82	0.81	13	
GP-Nest	166	0.81	0.77	170	
ASNN	166	0.94	0.69	100	<pre>VCCLAB</pre>
ASNN+kNN	166	0.94	0.77	188	

Training set - 110 compounds, test set - 27 compounds.

Predicted pIC50 values versus observed with errorbars. Training set in blue. Test set in red.



- Error bars include noise variance
- Confidence in prediction



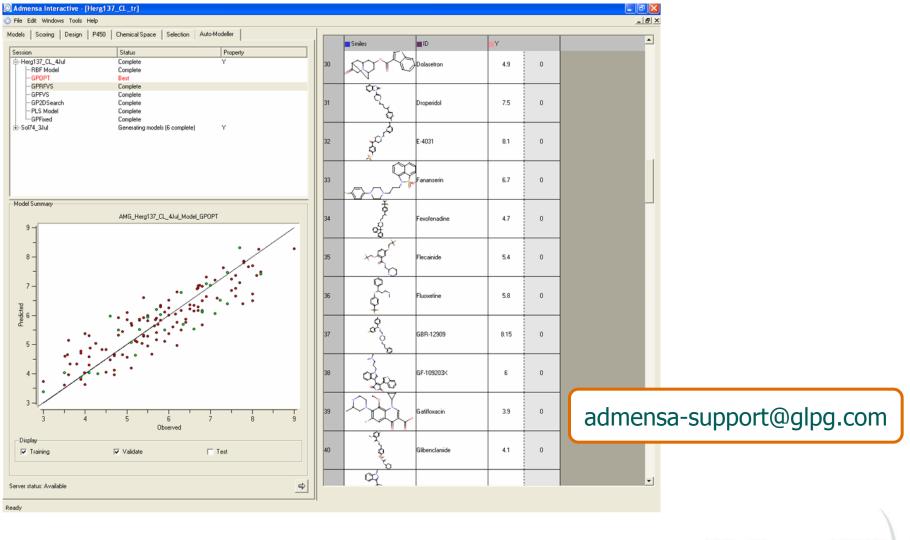
• Original GP error bars, do not include experimental noise variance

BioFocus

A **Galapa**gos Company

• Applicability of the model

Admensa Interactive. Auto-Modeller.



BioFocus DPI

A Galápagos Company

Gaussian Processes: Practical steps

Structure of functions determined by covariance (kernel) function:

 $\operatorname{cov}(f(\boldsymbol{x}), f(\boldsymbol{x}')) = C(\boldsymbol{x}, \boldsymbol{x}')$

 Distribution of functions is multivariate Gaussian with zero mean and covariance matrix

$$\boldsymbol{K} = \boldsymbol{C} + \boldsymbol{\theta}_3 \boldsymbol{I}$$

• ARD covariance function (automatic relevance determination)

$$C(\mathbf{x}, \mathbf{x'}) = \theta_1 \exp\left[-\frac{1}{2} \sum_{i} (x_i - x'_i)^2 / r_i^2\right] + \theta_2$$

- Control fit and smoothness via hyperparameters.
 - $\succ \theta_3$ is a variance of noise present in the observed values.
 - > $\{r_i\}$ are length scale parameters.

Gaussian Processes: Hyperparameters

- Noise variance θ_3 : too small value leads to overtraining.
- Length scale parameters $\{r_i\}$: large values mean that corresponding descriptor does not influence the property values very much. Automatic relevance determination.

