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Abstract 
Many definitions of ‘drug-like’ compound properties have been published, based on analysis of simple 
molecular properties of successful drugs. These are typically presented as rules that indicate when a 
compound’s properties differ significantly from those of the majority of drugs, which may indicate a higher risk 
of poor outcomes for in vivo pharmacokinetics or safety. We review the strengths and weaknesses of these 
rules and note, in particular, that overly rigid application of hard cut-offs can introduce artificial distinctions 
between similar compounds and runs the risk of missing valuable opportunities. Alternatively, compounds can 
be ranked according to their similarity to marketed drugs using a continuous measure of ‘drug-likeness’. 
However, being ‘similar’ to known drugs does not necessarily mean that a compound is more likely to become 
a drug and we demonstrate how a new approach, utilising Bayesian methods, can be used to compare a set of 
successful drugs with a set of non-drug compounds in order to identify those properties whose values give the 
greatest distinction between the two sets, and hence the greatest increase in the likelihood of a compound 
becoming a successful drug. This analysis further illustrates that guidelines for ‘drug-likeness’ may not be 
generally applicable across all compound and target classes or therapeutic indications. Therefore, it may be 
more appropriate to consider specific guidelines for ‘drug-likeness’ dependent on the objectives of a project. 
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Definitions of ‘Drug-likeness’ relate simple molecular properties, such as molecular weight, physicochemical 
properties, number of rotatable bonds or number of aromatic rings to success against a drug discovery 
objective, usually achieving appropriate pharmacokinetics and safety. For example, Lipinski’s, now ubiquitous, 
Rule of Five (RoF) [1] [2] defines four simple rules for the majority of compounds with good oral absorption: 

 Logarithm of the octanol:water partition coefficient (logP) < 5 

 Molecular weight (MW) < 500 

 Number of Hydrogen bond donors (HBD) < 5 

 Number of Hydrogen bond acceptors (HBA) < 10 

Many alternative rules have been proposed relating compound properties such as polar surface area (PSA) and 
number of rotatable bonds (ROTB) to oral bioavailability. For example, Veber et al. investigated a dataset of 
1,100 compounds with rat oral bioavailability data and found that those with ROTB of less than 10 and PSA less 
than 100 Å

2
 had a higher probability of achieving oral bioavailability greater than 20%  [3]. However, Lu et al. 

showed that the values of these cut-offs depended on the method used for the calculation of ROTB and PSA 
[4].    

Rules have also been developed relating ‘drug-like’ properties to other outcomes. For example, Lovering et al. 
[5] identified the ‘flatness’ of a compound, as measured by the fraction of sp3 hybridized carbons, as an 
indicator of success in development. In a similar way Ritchie et al. [6] approached this question by relating the 
number of aromatic rings (AROM) to properties such as solubility, serum albumin binding and hERG inhibition. 
Furthermore, Hughes et al.  explored the relationship of logP and  PSA with observations of in vivo adverse 
toxicological events and found that compounds with logP >3 and PSA < 75 Å

2
 have a significantly increased 

safety risk [7]. 

‘Drug-like’ properties and their associated rules have a number of strengths that have led to their popularity. 
In particular, they are very straightforward to understand and apply; the molecular properties on which they 
rely may be readily calculated and it is easy to identify a compound that fails on the criteria and how it may be 
modified to meet them. The rules for ‘drug-like’ properties provide useful guidelines to avoid common pitfalls 
that may be encountered downstream in discovery and development. 

However, a number of weaknesses underlie this apparent simplicity. Most importantly, the rules for ‘drug-like’ 
properties apply only to the specific objective for which they were derived. For example, it is common to see 
the RoF used as a general definition of ‘drug-like,’ irrespective of the ultimate therapeutic goal of the project. 
However, the RoF relates only to oral absorption and the rules governing compounds for other routes of 
administration such as inhalation or topical application are quite different [8]; in these contexts, applying the 
RoF is likely to reject perfectly reasonable compounds. 

In addition, the simple molecular properties which form the basis of the rules for ‘drug-likeness’ are only 
weakly predictive of a compound’s ultimate biological properties. Given this, applying these rules as hard ‘cut-
offs,’ or filters, runs the risk of missing valuable opportunities; for example, does a compound a MW of 501 
have a significantly greater risk than a compound with MW of 499? It should also be noted that the RoF states 
that a compound has a higher risk of poor oral availability if it fails two or more of the criteria above, yet it is 
common to see all four criteria used independently as filters. Even when the RoF is applied as originally 
formulated, it is not highly predictive; table 1 shows the results of applying the RoF to 1191 marketed drugs 
labelled according to whether they have been approved for oral administration. One should not over interpret 
the results from a small, imbalanced set, however there are some notable observations that may be made: The 
RoF is not a guarantee of finding an orally available compound (we would not expect this as the RoF relates 
only to absorption and other factors such as first pass metabolism are important factors in determining oral 
bioavailability). Furthermore, many of the compounds that fail the ROF are orally administered and more non-
orally administered compounds pass the RoF than fail, meaning that the specificity is poor. 

  RoF result 

  Pass ( 1RoF failure) Fail (>1 RoF Failure) 

Route of administration 
Oral 709 59 

Non-oral 333 90 
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From this we can see that passing the rules for ‘drug-like’ properties may bias the odds in favour of finding a 
successful compound, but applying these rules as hard filters runs the risk of rejecting valuable compounds. 
These rules are guidelines and should be given appropriate weight alongside other criteria for selecting a 
compound. 

Many of the rules for ‘drug-like’ properties are derived from exploring the characteristics that successful drugs 
for the chosen objective have in common. Intuitively, it makes sense that compounds which differ significantly 
from the majority of known oral drugs will have a higher risk of failure due to inappropriate physicochemical or 
biological properties; there is little precedence for the success of such a compound and if successful it would 
be exceptional. However, being ‘similar’ to known drugs does not necessarily mean that a compound will have 
a better chance of becoming a drug than any other compound synthesised in the course of a drug discovery 
project. Some properties provide more information than others to distinguish successful compounds from 
unsuccessful. For example, if the distribution of a property is the same for oral drugs as that for all synthesised 
compounds then this property will tell us nothing about whether a compound will be more, or less, likely to 
become an oral drug. Rejecting a compound on the basis of such a characteristic would not be appropriate and 
would run the risk of missing valuable opportunities. 

Quantitative Estimate of Drug-likeness 
One approach to overcoming the problem of hard cut-offs and replace this with a continuous scale, by which 
chemistries can be ranked according to their drug-likeness, was recently published by Bickerton et al. [9]. The 
Quantitative Estimate of Drug-likeness (QED) relates the similarity of a compound’s properties to those of oral 
drugs based on eight commonly used molecular properties: MW, logP, HBD, HBA, PSA, ROTB, AROM and count 
of alerts for undesirable substructures (ALERT). 

The QED is based on a method for multi-parameter optimisation known as ‘desirability functions’ [10]. A 
desirability function relates the value of a compound characteristic to the ‘desirability’ of that outcome. The 
desirability is a number between zero and one, where a value of one indicates that the outcome is ideal and a 
value of zero indicates that the outcome is completely unacceptable.  

To derive the QED metric, desirability functions were fitted to the distributions of the eight properties listed 
above for 771 marketed oral drugs. Using this method, a higher desirability score is assigned to a compound 
for a given property if the probability of observing that compound’s property value is high for the marketed 
oral drugs. An example is shown in Figure 1 for molecular weight. The desirabilities of all the individual 
properties are combined into a single score, the QED, by taking their geometric mean, thus bringing together 
many of the factors considered by the drug-like property rules summarised above. 
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Figure 1 This graph shows the distribution of MW for a set of 771 orally absorbed small 
molecule drugs and a desirability function (blue), as used in QED, fitted to this distribution. The 
most desirable property values correspond to those most frequently observed in the set of 
drugs. 
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Bickerton et al. showed that the QED performed well in identifying a set of 771 marketed oral drugs, taken 
from DrugBank [11], from a set of 10,250 small-molecule ligands from the Protein Data Bank (PDB) ligand 
dictionary [12] (note that this was a different set of 771 oral drugs from that used to fit the desirability 
functions, although there was some overlap). Furthermore, the authors showed that the QED values agreed 
with medicinal chemists’ subjective views of the attractiveness of compounds as hits on which to undertake 
further chemistry. 

To aid interpretation, the desirabilities of the individual properties of a compound may be examined to identify 
those that differ most significantly from the majority of drugs which may, in turn, indicate strategies to 
improve the similarity. 

Relative Drug Likelihood 
The QED method overcomes one of the problems of ‘drug-like’ property rules by replacing hard cut-offs for 
individual properties with a single, continuous scale that combines many properties and allows chemistries to 
be ranked according to their similarity with oral drugs. However, as discussed above, a compound with a 
similar value of a property to known drugs does not necessarily have a higher chance of being a drug; some 
properties have more importance in distinguishing drugs from non-drugs and it is necessary to compare the 
properties of drugs and non-drugs to determine this. In essence, we are more interested in the properties that 
make drugs different from other compounds that might be considered in the course of a drug discovery project 
than the properties that drugs have in common. 

In order to make this comparison, we may consider that a desirable value of a property is one that increases 
the probability of identifying a drug. Bayesian probability theory allows us to approach this question in a 
quantitative manner by comparing the distribution of properties of drugs with those of non-drugs. The 
underlying concept is that property values that are more likely to be observed in drugs than non-drugs are 
more desirable, because they imply an higher likelihood of a compound being a drug relative to a randomly 
selected compound (the mathematics are described in Box 1). This relative likelihood can be calculated as a 
function of a property value. A relative likelihood above one is good because it indicates that the property 
value increases the chance of a compound being successful while, conversely, a relative likelihood below one is 
bad. In a similar way to QED, the relative likelihoods of the individual properties of a compound can then be 
combined into a single score, the Relative Drug Likelihood (RDL), allowing chemistries to be prioritised. 

One drawback of this approach is that it is necessary to specify a ‘negative’ set to represent the population of 
typical non-drug compounds from which we would like to identify potential drugs and an advantage of a 
similarity-based approach, such as QED, is that it may be applied in the absence of information on negative 
compounds.  The suitable population of non-drugs is not one of totally random compounds, because the 
compounds chosen for synthesis in drug discovery would normally have been preselected in some way.  A 
chemist's experienced eye cast over potential compounds is, itself, a form of pre-selection.  

The choice of appropriate ‘positive’ (drug) and ‘negative’ (non-drug) sets for this analysis depends on the 
objective that we would like to explore. For example, we may wish to understand the properties that, in 
general, distinguish oral drugs from other compounds explored in small molecule drug discovery. To address 
this question, an appropriate negative set, representing a large, diverse set of compounds that have been 
considered in the course of medicinal chemistry projects, is provided by the ChEMBL database 
(https://www.ebi.ac.uk/chembldb/). To allow a direct comparison with the QED method, we have used the 
eight properties considered in QED for 1,000 randomly selected compounds from the ChEMBL database 
considered as a negative set and compared these with the 771 marketed oral drugs published in Bickerton et 
al. [9]. The property distributions and resulting relative likelihood functions are shown in Figure 2.  

The performance of the QED and RDL methods can be compared for selection of a different set of 771 
marketed oral drugs, taken from DrugBank, from the 656,737 compounds from the ChEMBL dataset remaining 
after the 1000 compounds used to construct the RDL have been removed (note that, for consistency, the 
second set of 771 drugs is the same as that used to benchmark the performance of QED in Bickerton et al. [9]). 
The receiver operating characteristic (ROC) plot for selection of the oral drugs from this larger set is shown in 
Figure 3. From this, it can be seen that the performance of the RDL is significantly higher than the QED metrics, 
indicating that the additional information derived from the comparison of positive and negative sets increases 
the ability to accurately distinguish successful compounds from the ‘background’ of compounds explored in 
drug discovery projects. 

https://www.ebi.ac.uk/chembldb/
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 2 Graphs showing distributions of eight molecular properties studied for a set of 771 orally absorbed small 
molecule drugs (blue) and compounds in the ChEMBL database (red). MW (a), lipophilicity estimated by atom-based 
prediction of ALOGP (b), number of HBDs (c), number of HBAs (d), PSA (e), number of ROTBs (f), number of AROMs (g) 
and number of ALERTS (h).The resulting function indicating the relative likelihood of a compound being an oral drug 
(right vertical axis) is shown as a black line. 
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 This observation is particularly notable because the compounds in the negative data set from ChEMBL are 
already biased by medicinal chemists experience and the application of drug-like property rules over several 
years. Therefore, identification of compounds from this set will be harder than from a truly random selection 
of compounds. 

If we examine the graphs shown in Figure 2, we can make some interesting additional observations regarding 
the relative likelihood functions of the individual properties. The properties that provide the greatest ability to 
distinguish between the drugs and non-drugs are MW, PSA and ROTB, as indicated by the high values of the 
desirability functions for some values of these properties; in some cases indicating an enhancement in the 
relative likelihood of greater than two. Similarly, very low relative likelihoods indicate property values that 
correspond to a high risk of failing to achieve acceptable bioavailability after oral administration. Conversely, it 
can be seen that HBA provides relatively low power of discrimination, because the relative likelihood remains 
within a small range close to 1. 

It is also notable that the relative likelihoods for some properties, e.g. MW, HBD, ROTB and ALERTS, exhibit a 
counter-intuitive increase for high values (although the value remains below 1.0, indicating that these property 
values are not good).   There are, of course, a number of oral drugs with high values for MW, for example 
macrolides such as Sirolimus, and Erythromycin. It is hypothesised that these large, flexible molecules do not 
‘obey the rules’ governing typical small molecule drugs; they may undergo hydrophobic collapse and, in 
practice, have a lower lipophilicity and volume than a more rigid compound of the same molecular weight and 
calculated logP. Similarly, there are a number of drugs such as Cimetidine, Cefpodoxime and Dantrolene which 
match several of the structural alerts that were applied. This may indicate that some of these alerts are not 
sufficiently specific or, alternatively, that there is an oversensitivity toward the exploration of chemistry 
containing substructures that have previously been associated with toxicity. Therefore, the increase in the 
relative likelihood may indicate that these regions of ‘chemical space’ have been underexplored in drug 
discovery projects relative to the number of oral drugs that have resulted from this chemistry. Alternatively, it 
is possible that these effects are artefacts of the data in ChEMBL, which have been abstracted from journals 
that may have greater focus on ‘traditional’ small molecule medicinal chemistry. 
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Figure 3 Receiver operating characteristic (ROC) plot of the true positive rate 
(sensitivity) against the false positive rate (FPR (1 - specificity)) for the 
classification of compounds as orally absorbed drugs or otherwise using RDL and 
the unweighted (QEDw,u) and mean optimal entropy (QEDw,mo) QED schemes. In 
this case, a set of 771 orally administered small molecule drugs were identified 
from a negative set of >650k compounds from ChEMBL. 

A perfect classifier would be represented by the point in the top left and a 
performance below the identity line indicates worse performance than a random 
classification. A greater area under the curve (AUC) for a classifier indicates 
higher performance; the AUC for RDL is 0.73, QEDw,mo is 0.64 and QEDw,u is 0.63. 
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These unexpected trends further highlight the challenge of deriving general rules for the properties that make 
a compound drug-like or otherwise. Many observations of drug like properties do not account for the different 
contexts from which the drugs analysed are derived and the requirements will depend heavily on the objective 
of the project, such as target class and therapeutic indication; thus, for example, antibiotic drugs do not 
provide a good guide to appropriate characteristics for a compound intended as a CNS drug. 

An advantage of the RDL approach is that it can be easily adapted to different objectives. Example code to 
generate an RDL metric for any objective is provided in the supplementary information for this article. As a 
further illustrative example, we generated a target-class focussed RDL desirability function for MW using a 
positive set of 156 orally available drugs for G-Protein Coupled Receptor (GPCR) targets and a corresponding 
negative set of compounds screened against GPCR targets, derived from the GPCR SARfari database 
(https://www.ebi.ac.uk/chembl/sarfari/gpcrsarfari). The resulting distributions and relative likelihood function 
for MW are shown in Figure 4, from which we can see that the counterintuitive asymptotic behaviour seen in 
the relative likelihood function derived from general drugs and medicinal chemistry compounds is not present. 
This is because exploration of chemistry with high molecular weight has not yielded oral drugs for this target 
class. 

As discussed above, the simple ‘dug-like’ molecular properties correlate only weakly with the in vivo 
disposition of a compound. However, it may still be useful to consider the relative likelihood of achieving 
objectives relating to parameters such as pharmacokinetic endpoints in order to identify trends with which to 
guide optimisation. As a brief example, we can consider the objective of identifying a compound with volume 
of distribution at steady state (VDss) of less than 1 L/kg which may be desirable to avoid high tissue binding. 
Using a database of pharmacokinetic parameters in human, published by Obach et al. [13], we identified a 
‘positive’ set of 345 compounds and a ‘negative’ set of 322 compounds (see supplementary information). The 
resulting distributions and relative likelihood function for logP are shown in Figure 5, from which it can be seen 
that a negative logP, indicating high water solubility, significantly increases the likelihood of achieving a low 
VDss. Furthermore, the likelihood of achieving low VDss falls below average if the logP of a compound is greater 
than approximately 1. We can understand this because compounds with higher water solubility are likely to 
remain in solution in the plasma or extracellular fluid and will not readily bind to lipid tissues. 

 

 

Figure 4 Graph showing the distributions of MW for oral administered drugs for 
GPCR targets  (blue) and compounds screened against GPCR targets in the GPCR 
SARfari database (red). The resulting function indicating the relative likelihood of 
a compound being an oral drug for a target in this class (right vertical axis) is 
shown as a black line. This can be compared with the equivalent graph in Figure 
2(a) comparing a general set of orally administered drugs and drug discovery 
compounds. This illustrates that the property values that distinguish successful 
from unsuccessful compounds can depend strongly on the specific objective. 

https://www.ebi.ac.uk/chembl/sarfari/gpcrsarfari
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Conclusion 
Consideration of drug-like properties can provide useful guidance when considering chemistries to pursue in 
the search for a novel drug; where possible, it is preferable to work in areas of chemistry that have lower risk 
of issues related to poor pharmacokinetics or safety. However, rules and scores for drug-like properties should 
be given appropriate weight in decision-making and should be balanced against other requirements for a drug, 
not least potency and, as we have discussed in this article, hard cut-offs should be avoided. It is also important 
to remember that these rules and trends are generated for specific objectives, most commonly oral absorption 
or bioavailability, and may not be applicable in other scenarios. If possible, the guidelines should be tailored to 
specific therapeutic or target classes and routes of administration. 

Drug-like property guidelines are most commonly applied early in a drug discovery project, for example in 
design of screening libraries or hit prioritisation, where experimental data on many properties are limited or 
unavailable. When experimental data are available for compound potency and other properties, these clearly 
provide much more information about their desirability for further investigation. In this scenario, the search 
for drug-like properties has a much more limited role to play, perhaps providing guidelines regarding possible 
directions to improve poor experimental outcomes. For example, in the cases of QED and RDL, one can clearly 
identify the specific properties that contribute most to a reduction in the desirability or likelihood of success of 
a compound. 

The guidelines for drug-like properties are, by definition, based on historical precedence. It is possible that 
exploration of new chemical space will yield new approaches to achieve appropriate pharmacokinetics and 
safety. Indeed, some therapeutic strategies, such as inhibition of protein-protein interactions or epigenetic 
targets, may demand the discovery of compounds that ‘break the rules’. However, unprecedented approaches 
carry additional risks. 

Finally, it is important to remember that while having good drug-like properties or a high QED or RDL indicates 
a higher chance of a compound becoming a drug, these are far from guarantees of success; the absolute 
probability is still small. There are many hurdles that a compound must overcome to become a successful drug 
and far more drug-like compounds fail than succeed. An important source of risk, that cannot be addressed by 
the properties of a candidate small molecule drug, is the biological risk associated with the therapeutic target. 
Lack of efficacy or toxicity associated with the biological mechanism of the target remain major causes of 
failure in later stages of clinical development. Introducing specific data on risk factors through good predictive 
or experimental methods and assessing the overall balance of properties using a multi-parameter optimisation 

Figure 5 Graph showing the distributions of logP for compounds with low VDss 
(blue) and high VDss (red) based on a cut-off of 1 L/kg. The resulting relative 
likelihood function for identifying a compound with low VDss is shown as a black 
line (right vertical axis). This illustrates how the relative likelihood approach can 
identify property trends for individual parameters such as PK endpoints. 
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[14] approach, as a compound progresses, will allow these additional sources of risk to be mitigated to achieve 
greater confidence in its success.  
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Supplementary Information 
A full derivation of the RDL method along with example code to calculate the RDL for any positive and negative 
sets of compounds are provided in the supplementary information. Furthermore, the positive and negative 
data sets used in the examples presented herein are also provided. 
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Box 1: Bayesian Probability and Relative Likelihood 
Bayesian probability theory allows us to infer the probability of an outcome for a new compound based on 
data observed for previous compounds with known outcomes. In this context, Bayes’ theorem states: 

       
          

    
. 

Here, P(D|X) is the probability of a compound being a drug given the value of a property X, which this is what 
we would like to know; in Bayesian terms this is known as the posterior. P(X|D) is the probability of the 
property X given that a compound is a drug, known as the likelihood. P(X) is the probability distribution for the 
property X for all compounds, whether drugs or not, and is known as the evidence. Finally, P(D) is the 
probability of a compound being a successful drug, given no further information, which is the ‘prior 
probability’ of a compound being a drug (a very small number, based on historical evidence!). 

In a similar way, we can compute the posterior probability of a compound not being a drug, given the value of 
a property X: 

        
            

    
. 

We can then determine if a compound is more likely to be a drug based on its property values, by taking the 
ratio between the posterior probability of a compound being a drug and not being a drug to arrive at the 
equation: 

      

       
 

      

       

    

     
. 

A desirable value for a property is one for which this ratio is relatively high, i.e. the probability of a compound 
being a drug is increased relative to the probability of it not being a drug. P(D) and P(D’) are unknown, but they 
are constants and hence this ratio is directly proportional to the ratio of the likelihoods of property X for drug 
and non-drugs. Therefore, our measure of desirability is the relative likelihood 

     
        

         
. 

The relative likelihood functions above for different properties can be combined into a single desirability index, 
the Relative Drug Likelihood (RDL), by taking the geometric mean of the desirabilities of the individual 
properties: 

         
 

 
           

 
     . 

The mathematical details of the derivation of the RDL metric are provided in the supplementary information. 

 


