

Alan Naylor Independent Consultant

Optibrium Consultants Meeting Cambridge 27th November 2012

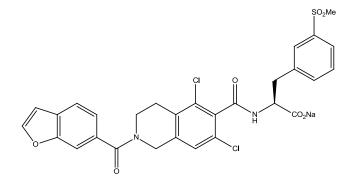
Why PPI inhibitors?

- PPIs are involved in many biological / disease processes
 - Estimated ca 300K relevant PPIs in man
- Huge potential relatively unexplored
 - Previously considered intractable targets but now significant interest
 - □ Driven by need to find new therapeutic targets
 - Traditional targets eg GPCRs , kinases etc have intense competition

Current Industry Activity

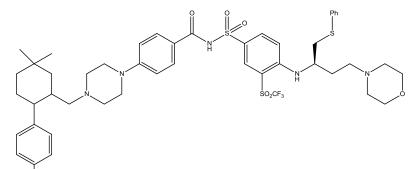
Compounds in Clinical Development

- SARcode: SAR1118-023 (ICAM-1/LFA-1 inhib.)— Phase III for 'dry-eye' (intraocular)
- □ Abbott / Genentech: Navitoclax (Bcl2 inhib.) Phase II CLL
- Teva : Obatoclax (Bcl2 inhib.) Phase II non-Hodgkins Lymphoma (parenteral)
- Roche: RO5503781 (MDM2 / p53 inhib.) cancer (oral)


PPI Alliances

- □ Boehringer-Ingelheim / Forma access to PPI inhibs for cancer therapy
- BMS / Ensemble 8 PPI targets
- Shionogi / Evotec fragment-based discovery for PPIs
- Many companies have efforts in the PPI area

Academic Engagement


□ Several academic groups engaged in PPI inhibitor discovery

PPI Inhibitors in Clinical Development

SAR 1118-23 MW 637.5

ICAM-1 / LFA-1 inhibitor

Navitoclax MW 974.6

Bcl-2 inhibitor

Target Tractability

Perceived difficulties with PPIs

- Protein surfaces large and featureless?
 - Protein contact surface generally 750 1500A²
 - Binding energy predominantly hydrophobic
- □ Large lipophilic molecules required to inhibit PPI?
 - 'hot spots' present on some proteins
 - Binding cavities
 - Small subset of residues may contribute most of free energy of binding – protein partner / small molecule

How can we identify which PPIs are tractable?

- Structural biology
- Computational methodologies
 - Molecular dynamics simulation identify binding cavities

Source of Hits (1)

Is each PPI different?

□ Are there (will there be) privileged scaffolds cf GPCRs , kinases etc?

- α -helix, β -sheet mimics, others?
- Need for library expansion?

□ More 3D structures?

Lipinski' compliance?

Where to look?

Forma

- 150K compounds with 2-5 stereocentres derived from 'diversity-oriented synthesis' approach to identify novel chemical space
- Additional library based on protein mapping and interface analysis

Ensemble

- Library of >4m macrocycles prepared via 'DNA-programmed chemistry'
- MW 500-1000Da
- Large 'can reach further across the protein interaction and access whatever features might be there' – Nick Terrett

Source of Hits (2)

Peptidomimetics?

□ Dale Boger – α -helix , β -sheet short peptides – 40K library

Fragments?

Screening technologies – low affinity detection

HTS?

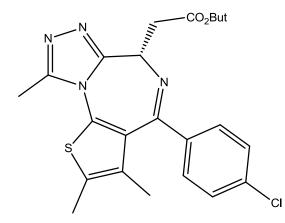
□ Suitability of current collections?

Rational design?

is current structural biology developed sufficiently?

Druggability of Hits / Leads

- Current optimised inhibitors tend (not all) to have high MWt and high logP
 Eg navitoclax violates 3 Lipinski 'rules'; MWt 975Da; clogP 12; HBA 12
- Ligand efficiencies tend to be slightly lower than 'traditional' targets
 - □ LE PPI inhibitors 0.24 0.27
 - □ LE Protease inhibitors 0.25 0.35
 - $\Box \quad \text{LE Kinase inhibitors} \qquad 0.30 0.40$
- Is it inevitable that we will need to operate outside currently accepted guidelines for drug-likeness?
- Do we need to re-evaluate 'drug-likeness' for this class?
- One school of thought suggests that reducing PSA, rotatable bond count and H-bonding groups should predict good oral bioavailability and may offset high MWt and clogP?
- What about target promiscuity (tox.)? will greater molecular complexity (3D mols) off-set increase in logP?


Screening Methodologies

- Examples of common screening platforms;
 - Fluorescence polarisation (FP)
 - Fluorescence Energy Transfer (FRET)
 - □ ALPHA- screen (cf FRET)

 - □ NMR
- Binding affinities of hits may be low esp fragment-based hits (10-100µM or greater)
 - □ Quality of data?
 - False hits?
 - Requirement for orthogonal assays?
 - □ Limitations of computational methods for early PPI discovery?

A recent 'drug-like' inhibitor!

Structural Genomics Consortium : Panagis Filippakopoulos et al ; Nature 2010

+-JQ1

Bromodomain - BRD4 inhibitor Kd ca 50nM F= 49%!