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Overview

e Multi-parameter optimisation (MPO) in drug discovery
e (Case study: Balancing properties in lead optimization
e Finding multi-parameter rules for drug discovery

e Example application: ‘Drug-like’ properties

e Conclusions
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The Objectives of Drug Discovery
Multi-parameter optimisation
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The Challenge
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Requirements for MPO in Drug Discovery

e Interpretable

— Easy to understand compound priority and how to improve
compounds’ chances of success

e Flexibility

— Define criteria depending on therapeutic objectives of project
e \Weighting

— Take into account relative importance of different endpoints to
success of project

e Uncertainty

— Take uncertainty into account, avoid missed opportunities



Approaches for MPO

e Many methods have been applied for MPO in drug
discovery
— Rules-of-thumb
- Filtering
— Calculated metrics
— Pareto optimisation
— Desirability functions

— Probabilistic scoring

e For a detailed review, please see:

- M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310(2012)
— Download from http://bit.ly/1140IS1



http://bit.ly/1140lS1
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Approaches for MPO

Probabilistic Scoring* — Scoring Profile

Profile Desired Value Importance
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© 2014 optibrium Ltd.  * Segal| et al. (2009) Chem. & Biodiv. 6 p. 2144



Probabilistic Scoring®

 Property data
- Experimental or predicted

e Criteria for success e Score (Likelihood of Success)
- Relative importance i

e Uncertainties in data

- Experimental or statistical

Data do not -
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as error bars | =
overlap Do | eey BoLiom 50/’
o .yl may be rejected
A osl Toe with confidence
Best Compounds ordered by score WO rst

* Segall et al. (2009) Chem. & Biodiv. 6 p. 2144



Provide Feedback on Influence of Properties
Guide redesign to improve chance of success
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Case Study

Balancing Properties in Lead Optimization
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Case Study*

Goal: Orally dosed compound against CV target

e |n vitro data for potency, selectivity, solubility, microsomal
stability (human and rat) generated on ~150 compounds

e Original process focused on potency and selectivity, filtering
compounds that did not meet requirements. Results:

- Low but prolonged activity after IP dosing
— No correlation between in vitro and in vivo potency
— Problems with solubility and metabolic stability

e Profile for probabilistic scoring:

Property Desired Value Importance
B Selectivity (fold) > B e
B Potency (uM) > )
M Experimental solubility (uM) > 10 R —
B Experimental HLM (% turnowver] £ &0 _]:I
Experimental RLM (% turnover] £ 60 ‘J:I

*Segall et al.,Expert Opin. Drug. Metab. Toxicol., 2 pp. 325-37 (2006)



Comparison of Strategies
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Finding Multi-Parameter Rules
for Drug Discovery

Patent pending
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The Next Challenge

How do we choose an appropriate scoring profile?

e Traditional methods rely on expert domain knowledge

- Introduces subjectivity depending on the experience of the scientist
- Increasing complexity of data

e Use existing data to find scoring profiles that identify compounds with
improved chance of success
- Any drug discovery objective, e.g. clinical, PK, toxicity...
— Once developed, a profile can be applied prospectively to find new compounds
e |dentify most important data with which to distinguish between
successful and unsuccessful compounds
— Any data can be used as input, calculated or experimental

e Explore complex multi-parametric data

— Consider properties simultaneously, not individually
- Avoid ‘over counting’ of correlated factors

e Rules must be interpretable and modifiable

— Avoid black boxes
- Synergy between computer and experts

l. Yusof et al. (2014) Drug Discov. Today DOI: 10.1016/j.drudis.2014.01.005



What is a Rule?

e A Ruleis a set of property criteria that in combination
identify ‘good’ compounds, e.g.

logP<4
Profile Desired Yalue
Ligand efficiency > 0.3 B logP < 4
‘ Ligand Efficiency = 03
m MW 100 -» 450
100 < MW < 450 M PPB category (version ... low

Importance

e
—]
[ ——
) —

PPB category = low

e For example, Lipinski’s Rule of Five:

logP<5 MW<500

HBD<5 HBA<10

l. Yusof et al. (2014) Drug Discov. Today DOI: 10.1016/j.drudis.2014.01.005




What is a Rule?

e ARuleisalso aboxin multi-dimensional property space
containing significantly more ‘good’ than ‘bad’ compounds

- Each box is equivalent to a scoring profile
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Rule Induction with PRIM

e The Patient Rule Induction Method (PRIM) by Friedman
and Fisher* is an effective way to find rules in multi-
dimensional data
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Rule Induction with PRIM

After finding one box, we remove the box’s compounds
from the dataset and repeat

Property Y

Property X

© 2014 Optibrium Ltd.

* Friedman & Fisher Stat. and Comp. 9(2), p. 123 (1999)



Rule Induction with PRIM

e Theresultis a series of boxes, each corresponding to an
individual rule or scoring profile
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Example Application
‘Drug-like’ Properties
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Example: Drug-Like Properties
Quantitative Estimate of Drug-likeness*

e Quantitative Estimate of Drug-Likeness (QED)*

— Published method we will use for comparison
— Measure of similarity to known oral drugs

e Combine values for 8 properties:

E_E_E_

ROTB AROM ALERT
e For each individual property 140 10
. e . . 120 I Frequency ||
desirability function fitted to e emmDesirability [ 0.8
. . . Er
distribution for 771 oral drugs & . 06 £
g 0 N
. S 60 - i =
e QED calculated as geometric & 0 4 8
mean of individual 20 - 0.2
desirabilities 0 - 0.0

0 200 400 600 800

*Bickerton et al. Nature Chem. 4, pp. 90-98 (2012)



Example: Drug-Like Properties
Relative Drug Likelihood*

e Relative Drug Likelihood (RDL)*

— Another published method also for comparison
- What makes a drug different from non-drug med. chem. compounds?

e Compare characteristics of 771 oral drugs with 1000 randomly
selected non-drugs from ChEMBL database

— What property values increase likelihood of compound being an oral
drug?

0.25 3
—Drugs
—ChEMBL

e Used same 8 properties as 2 | e oot
QED

2

=
(%)
Relative likelihood

e RDL calculated as geometric

mean of individual
likelihoods

*Yusof and Segall, Drug Discov. Today 18, pp. 659-666 (2013)



Example: Drug-Like Properties
Rule Induction

e Rule induction applied to data set of 771 oral drugs and
1000 randomly selected non-drugs from ChEMBL

— Random split 70:30 training:validation sets

e Used same 8 properties as QED and RDL as inputs

e 2 Rules:
Profile Desired Value Importance Profile Desired Value Importance
s Rkl
B MW £ 444 855 mesms|——— | (H ROTB % 404 T
B AROM £ 101 e ——— | | W ALOGP € 2727 L s
I ALERTS £ 10 [ ——

l. Yusof et al. (2014) Drug Discov. Today DOI: 10.1016/j.drudis.2014.01.005



Example: Drug-Like Properties
Results: ROC plot

e Applied to independent test set of 247 oral drugs and 1000
compounds randomly selected from ChEMBL

Perfect model —i

o
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o
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True Positive Rate (Sensitivity)

QED is not significantly
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—Random AUC
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© 2014 Optibrium Ltd.

l. Yusof et al. (2014) Drug Discov. Today DOI: 10.1016/j.drudis.2014.01.005 29



Conclusion

e MPO is a powerful approach to select and design
compounds with a high chance of success

— Focus quickly on high quality compounds _’

Guiding you to successful

e Rule Induction helps to guide the development of utosuceseu
scoring profiles to select compounds for a drug :
discovery objective StarDrop >

- Apply to any objective
- Use experimental or calculated data
— Not black box — synergy between computer and expert

e |dentify most important data to guide selection of successful
compounds

- Optimise screening strategy and prioritise experimental resources

e Download papers from:

- www.optibrium.com/community/publications

e For more information: www.optibrium.com



http://www.optibrium.com/community/publications
http://www.optibrium.com/
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