Multi-parameter Optimisation in Drug Discovery:
Quickly targeting compounds with a good balance of
properties




Overview

e Introduction: Balancing Properties in Drug Discovery

— The challenges of multi-parameter optimisation (MPO)
- Requirements for MPO in drug discovery

e Approaches for Multi-Parameter Optimisation

— Rules-of-thumb
- Filtering

— Desirability functions
— Probabilistic scoring

e Balancing quality and diversity
e Case study

e Conclusion
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The Objectives of Drug Discovery
Multi-parameter optimisation
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Challenge 1: Complexity of Data
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Visualisation is Important But Not Enough...*
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How can you make a confident decision by looking at these?

*Segall and Champness (2010) GEN, 30 (Sep 1) http://bit.ly/cSx4Tm



Challenge 2: Uncertainty in Data
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Requirements for MPO in Drug Discovery

e Interpretable

— Easy to understand compound priority and how to improve
compounds’ chances of success

e Flexibility

- Define criteria depending on therapeutic objectives of project

e Weighting

— Take into account relative importance of different endpoints to
success of project

e Uncertainty

— Take uncertainty into account, avoid missed opportunitites
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Approaches for MPO in Drug Discovery

~optibrium

Multi-Parameter Optimization: Identifying high

guality compounds with a balance of properties

Curr. Pharm. Des. 2011 (submitted)
Download preprint from: www.optibrium.com/community



Approaches for MPO
Rules-of-Thumb

e The most famous — Lipinski’s Rule-of-Five for oral absorption

logP<5 MW<500

HBD<5 HBA<10

e Many other have been proposed, e.g. Hughes et al. * explored
risk of adverse outcomes in in vivo toleration studies

logP<3 TPSA>75 A2

e Strengths:

- Simplicity, ease of application and interpretation

e Caveats:

- Rules tailored to specific objectives — lack of flexibility
— Risk of too rigid application

* Hughes et al. Bioorg Med. Chem. Lett. (2008) 18 p. 4875



Rules of Thumb

e How predictive are rules-of-thumb?
- E.g. Lipinski’s RoF applied to 1191 marketed drugs

RoF result

Pass Fail
(<1 RoF Failure) (>1 RoF Failure)

Non-oral
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Approaches for MPO

Filtering
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Approaches for MPO

Desirability Functions®

e Relate property values to how ‘desirable’ the outcome
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e Combine multiple properties into ‘desirability index’

— Additive: p= &)+ d’-'(y?-'?)l +-+dn (1)
— Multiplicative: D = (d,(¥}) X dy(Y2) X ... X d, (T )™

e Strengths
- Very flexible; Explicitly weight properties; Easy to interpret
e Caveats

- No explicit consideration of uncertainty; Need to know criteria a priori

© 2011 0ptibrium Ltd. — * Harrington EC. (1965) Ind. Qual. Control. 21 p. 494



Desirability Functions

CNS MPO*
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CNS MPO = sum of desirabilities for each parameter

e 74% of marketed CNS drugs achieved CNS MPO > 4 vs. 60% of
Pfizer candidates

e Correlations observed between high CNS MPO score and good
in vitro ADME properties, e.g. MDCK P, HLM stability, P-gp
transport

© 2011 optibrium Ltd. — *\Wagner et al. (2010) ACS Chem. Neurosci. 1 p. 435



Desirability Functions
CNS MPO and safety*

e CNS MPO score was also found to correlate with safely
endpoints:
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Approaches for MPO

Probabilistic Scoring* — Scoring Profile
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Probabilistic Scoring*

* Property data
- Experimental or predicted

e Criteria for success e Score (Likelihood of Success)
- Relative importance i

e Uncertainties in data

- Experimental or statistical
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Provide Feedback on Influence of Properties

Guide redesign to improve chance of success
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Balancing Quality and Diversity
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Visualising ‘Chemical Space’
Exploring trends across chemical diversity
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Balance Quality Against Diversity

Mitigating risk

© 2011 Optibrium Ltd.
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Case Study
Rapid Focus in Lead Optimisation
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Challenge

Identify orally active compound for a CNS target.

Project ‘chemical space’ of 3100 compounds
Area of chemistry focus

Summary of original project
progress

in

* Focus biased towards one area
of chemistry space
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Challenge

Identify orally active compound for a CNS target.
Project ‘chemical space’ of 3100 compounds

A more appropriate balance of properties

Summary of original project
progress

e Focus biased towards one area
of chemistry space

e Poor ADME properties
e Follow-up chemistry exploration

e Nowhere obvious to go next!

Cost so far: >3000 compounds synthesised, 400 compounds
tested in vitro and 70 compounds tested in vivo



StarDrop Process
Select 25 compounds for in vivo testing

3,100 compound
virtual library

7
In silico ADME profiling

StarDrop




StarDrop Process
Select 25 compounds for in vivo testing
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StarDrop Process
Select 25 compounds for in vivo testing

3,100 compound
virtual library

¥
In silico ADME profiling
Score for oral absorption
and CNS penetration

Select 10% based on
StarDrop score and diversity (25:75)
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Measure in vitro potency
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StarDrop Process
Select 25 compounds for in vivo testing

3,100 compound
virtual library

¥

In silico ADME profiling

Score for oral absorption
and CNS penetration

Select 10% based on
StarDrop score and diversity (25:75)

Measure in vitro potency

¥

Score for balance
of ADME and potency

Select 25 based on
score and diversity (75:25)



Results

Successfully selected same
key compounds identified by
the project but with:

Final selection

e 90% fewer compounds
synthesised

e 90% less potency screening
e 70% less in vivo testing

Interesting
chemistry?

In addition, identified a new
area of chemistry with good
potential!



Conclusions

e |In drug discovery, we must make confident
decisions on complex multi-dimensional data

— Uncertainty in all data

rug discover: y

StarDFop

e Requirements for MPO in Drug Discovery

- Interpretable
- Flexible

- Weighting

- Uncertainty

e Detailed review (submitted to Curr. Pharm. Des.)

- Multi-Parameter Optimization: Identifying high quality compounds
with a balance of properties

- www.optibrium.com/community

- matt.segall@optibrium.com
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