

Improving the Chance of Success where an Outcome Can't be Predicted

ACS Fall National Meeting, August 10th 2014 Matthew Segall, Iskander Yusof, Ed Champness

> © 2014 Optibrium Ltc Optibrium™, StarDrop™, Auto-Modeller™ and Glowing Molecule™ are trademarks of Optibrium Ltc Derek Nexus™ is a trademark of Lhasa Limited

Overview

- Prediction... The ideal scenario
 - Why this is often not possible
- An alternative... rules that improve the chance of success
 - Finding rules
 - Applying rules
- Example 1: Finding CNS Drugs
- Example 2: Finding Long duration compounds
- Conclusions

In an Ideal World

In an Ideal World Predicting an endpoint

Reasons Why Prediction (often) Doesn't Work Examples...

- Too much uncertainty
 - Variability in experimental data
 - Confidence in predictions too low
 - See talk 194, "Challenges of decision making using uncertain data" Room 2005, Moscone West, Tuesday 3.45 pm
- Process being modelled is too complex
 - E.g. multi-mechanistic, physiological processes
- Not enough data
 - Bias in available data

Finding Rules for Success

Patent pending

What is a Rule?

 A Rule is a set of property criteria that in combination identify 'good' compounds, e.g.

• For example, Lipinski's Rule of Five:

logP<5	MW<500
HBD<5	HBA<10

What is a Rule?

• A **Rule** is also a box in multi-dimensional property space containing significantly more 'good' than 'bad' compounds

Rule Induction

- 'Rule induction' method identifies multi-parameter regions of property space with higher chance of success
 - Also known as 'bump hunting' because it can find property regions corresponding to small increases in probability distribution

Determining 'Soft' Box Boundaries

- Box bounds from rule induction are hard cut-offs
- Sensitivity analysis of box bounds to data sampling
 - Particularly important for sparse data
 - Incorporate uncertainty into the generated box bounds
 - Cross validation between training/validation sets

Measuring Rule Performance

- Mean = Average objective value in box
 - Reported as % increase over objective value for full set
- Support = Proportion of data set 'covered' by box
 - Reported as % coverage
- Specificity vs. Sensitivity trade-off
 - Specify minimum coverage to avoid overtraining
- Also reported
 - Statistical significance (p-value)
 - Odds ratio (probability of success inside the box vs. outside)

Applying Multi-Parameter Rules Probabilistic Scoring*

- Property data
 - Experimental or predicted
- Criteria for success
 - Relative importance
- Uncertainties in data
 - Experimental or statistical

Score (Likelihood of Success)

OK

Cancel

Confidence in score

© 2014 Optibrium Ltd. * M.D. Segall (2012) Curr. Pharm. Des. 18(9) pp. 1292-1310 12

Example: Finding CNS Drugs

Finding CNS Drugs CNS MPO Score*

CNS MPO = sum of desirabilities for each parameter

- 74% of marketed CNS drugs achieved CNS MPO > 4 vs. 60% of Pfizer candidates
- Correlations observed between high CNS MPO score and good *in vitro* ADME properties, e.g. MDCK P_{app}, HLM stability, P-gp transport

- Data set of 119 CNS drugs and 108 failed candidates published by Wager *et al.**
- Divided into training and validation sets (70:30)
- Rule derived with 20% minimum coverage:

- Data set of 119 CNS drugs and 108 failed candidates published by Wager *et al.**
- Divided into training and validation sets (70:30)
- Rule derived with 20% coverage:

- Data set of 119 CNS drugs and 108 failed candidates published by Wager *et al.**
- Divided into training and validation sets (70:30)
- Rule derived with 20% coverage:

- Data set of 119 CNS drugs and 108 failed candidates published by Wager *et al.**
- Divided into training and validation sets (70:30)
- Rule derived with 20% minimum coverage:

Profile	Desired Value	Importance
MW	-inf -> 312.5 💶	
РКА	-inf -> 9.676 💻	
CLOGP	-inf -> 2.973 🕂	— []

Set	Mean Improvement (%)	Support (%)	Odds Ratio	p-value
Train	34	36	3.3	3×10 ⁻³
Val	67	24	10.4	2×10 ⁻⁴

Finding CNS Drugs Validation Results – ROC plot

• 38 CNS drugs and 34 failed candidates from Wager dataset*

*Wager et al. (2010) ACS Chem. Neurosci. 1 p. 435

Finding CNS Drugs A more realistic external test

118 (different) CNS drugs and 1000 CNS 'leads' (measured K_i
< 1 μM against CNS target) from ChEMBL database

Example: Finding Long Duration Compounds

Finding Long Duration Compounds

- Find rules to identify compounds with a half-life (T_{1/2}) in humans >100 hours
- Data set: 698 compounds with measured human T_{1/2}
 - Divided into training and validation sets (52:48) using clustering
 - Highly biased data set

Finding Long Duration Compounds 'Conventional' modelling techniques

- Classification models:
 - Random forest, decision trees, Gaussian process classifier
- Descriptors including:
 - Simple compound properties: MW, logP, TPSA, HBA/D, ROTB, AROM
 - Ionisation: pKa*, Acid/Base/Zwitterion/Neutral indicator
 - QSAR predictions: logS, PPB, P-gp transport, BBB...
- No 'High' validation set compound correctly predicted
 - N.B. Accuracy is 97%... Beware accuracy as metric for biased data!

Finding Long Duration Compounds Rule induction

- Descriptors:
 - Simple compound properties: MW, logP, TPSA, HBA/D, ROTB, AROM
 - Ionisation: pKa*, Acid/Base/Zwitterion/Neutral indicator
 - QSAR predictions: logS, PPB, P-gp transport, BBB...
- Rule derived with 2% minimum coverage:

Profile	Desired Value	Importance
TPSA	-inf -> 55.78 💶	0
MW	340.1 -> inf 🕂	0
logP	3.375 -> inf 🕂	0
Number of aromatic rings	1.2 -> inf 🖳	0
Min Acid pKa	4.648 -> inf 🕂	D

Set	Mean Improvement (%)	Support (%)	Odds Ratio	p-value
Train	269.4	19.3	12	8×10 ⁻³
Val	425.0	11.9	14	8×10 ⁻²

Finding Long Duration Compounds ROC plot

Conclusions

- In many cases it is not possible to predict an outcome with confidence
 - Often due to sparse or biased data

- <complex-block>
- Rule induction provides a way to find multi-parameter selection criteria that improve the chance of success
- Multi-parameter optimisation provides a robust way to apply these rules and bias the odds in our favour
- For more details, see:
 - I. Yusof et al. (2014) Drug Discov. Today 19(5) pp. 680-687
 - Download (p)reprint from <u>www.optibrium.com/community/publications</u>
- Or visit Booth 1324 for a demo

Acknowledgements

- Tatsu Hashimoto MIT
- The Optibrium team, including:
 - Chris Leeding
 - James Chisholm
 - Nick Foster
 - Peter Hunt
 - Alex Elliott
 - Jon Tyzack
 - Sam Dowling
- For the long duration project:
 - Joelle Gola
 - Mark Gardner AMG Consultants