

Finding Multi-parameter Rules for Successful Optimization

ACS Spring National Meeting, April 10th 2013 Matthew Segall, Iskander Yusof, Edmund Champness

Patent pending

© 2013 Optibrium Ltd Optibrium™, StarDrop™, Auto-Modeller™ and Glowing Molecule™ are trademarks of Optibrium Ltd.

Overview

- Probabilistic scoring for multi-parameter optimization (MPO)
- Finding multi-parameter rules for drug discovery
- Methods
 - Rule induction
- Illustrative applications
 - 'Drug-like' properties
 - Oral CNS compounds
- User interaction
- Conclusions

Probabilistic Scoring for MPO

The Objectives of MPO

Identify chemistries with an optimal balance of properties

- Quickly identify situations when such a balance is not possible
 - -Fail fast, fail cheap
 - -Only when confident

Requirements for MPO in Drug Discovery

- Interpretable
 - Easy to understand compound priority and how to improve compounds' chances of success
- Flexibility
 - Define criteria depending on therapeutic objectives of a project
- Weighting
 - Take into account relative importance of different endpoints to the success of a project
- Uncertainty
 - Take uncertainty into account, avoid missed opportunities

Probabilistic Scoring Scoring Profile

²⁰¹³ Optibrium Ltd. * Segall *et al.* Chem. & Biodiv. **6** p. 2144 (2009)

StarDrop Prioritisation Probabilistic Scoring

- Property data
 - Experimental or predicted
- Criteria for success
 - Relative importance
- Uncertainties in data
 - Experimental or statistical

- Score (Likelihood of Success)
- Confidence in score

^{3 Optibrium Ltd.} * Segall *et al.* Chem. & Biodiv. **6** p. 2144 (2009)

The Next Challenge

- How do we choose an appropriate scoring profile?
- Two approaches:
 - Domain/expert knowledge
 - Find the profile *automatically* using existing data
- Can we score compounds automatically without losing the benefits of expert knowledge?
 - Avoid 'black boxes'
 - Maintain interpretability and interactivity

Finding Multi-Parameter Rules for Drug Discovery

Objectives and Challenges

- Use historical data to find scoring profiles with which to identify compounds with improved chance of success
 - Any drug discovery objective, e.g. clinical, PK, toxicity...
 - Once developed, profile can be applied prospectively to find new compounds
- Identify most important data with which to distinguish between successful and unsuccessful compounds
 - Any data can be used as input, calculated or experimental
- Explore multi-parametric data
 - Consider properties simultaneously, not individually
 - Avoid 'over counting' of correlated factors
- Rules must be interpretable and modifiable
 - Avoid black boxes
 - Synergy between computer and experts

What is a Rule?

 A Rule is a set of property criteria that in combination identify 'good' compounds, e.g.

• For example, Lipinski RoF:

logP<5	MW<500
HBD<5	HBA<10

What is a Rule?

- A Rule is a box in multi-dimensional property space containing significantly more 'good' than 'bad' compounds
 - Equivalent to a scoring profile

Methods

- The Patient Rule Induction Method (PRIM) by Friedman and Fisher is an effective way to find rules
- **Top-down peeling:** Start with a box covering all the compounds
- Then repeatedly peel the "worst" sides of the current box

- Bottom-up pasting: "Paste" back regions that we overzealously peeled
- We stop when pasting provides no improvement

- This peeling-and-pasting process gives us a **peeling sequence** of boxes
- We select a single box from the peeling sequence based on its performance over the validation set
- Resulting box corresponds to a rule for selection of successful compounds

• After finding one box, we remove the box's compounds from the dataset and start over

• The result is a series of boxes, each corresponding to an individual rule

Measuring Rule Performance

- Mean = Average objective value in box
 - Reported as % increase over objective value for full set
- Support = Proportion of data set 'covered' by box
 - Reported as % coverage
- Specificity vs. Sensitivity trade-off

Variable Importance

- PRIM does not tell us the relevance of each property criterion to a given rule's predictions
- Cannot answer questions like:
 - Should we trade off solubility for potency?
 - Would it be valuable to generate data for a particular property?

Variable Importance

• α_i = false-negative rate of property criterion *i*

• Importance = $1 - \alpha_i$

Illustrative Results

Example: Drug-Like Properties QED*

- Quantitative Estimate of Drug-Likeness (QED)*
- Combine values for 8 properties

MW	logP	HBD	НВА
PSA	ROTB	AROM	ALERT

- For each individual property desirability function fitted to distribution for 771 oral drugs
- QED calculated as geometric mean of individual desirabilities

Example: Drug-Like Properties RDL*

- Relative Drug Likelihood (RDL)*
- Compare characteristics of 771 oral drugs with 1000 randomly selected compounds from ChEMBL database
 - What property values increase likelihood of compound being an oral drug?
- Used same 8 properties as QED
- RDL calculated as geometric mean of individual likelihoods

© 2013 Optibrium Ltd. *Yusof and Segall, Drug Discov. Today DOI: 10.1016/j.drudis.2013.02.008

Example: Drug-Like Properties Rule Induction

- Rule induction applied to data set of 771 oral drugs and 1000 randomly selected compounds from ChEMBL
 - Random split 70:30 training:validation sets
- Used same 8 properties as QED and RDL as inputs
- Minimum coverage values compared
 - 20%, 30%, 40%, 50%

Example: Drug-Like Properties Rule Induction

• Minimum coverage 20% - 2 Rules

Profile		Desired Value	Importance
▲ Rule1			
MW	≤	444.855	
AROM	≤	1.01	
ALERTS	≤	1.01	

Set	Mean Improvement (%)	Coverage (%)
Train	60	22
Val	57	24

Profile		Desired Value	Importance
🔺 Rule 2			
ROTB	≤	4.04	
ALOGP	≤	2.727	

Set	Mean Improvement (%)	Coverage (%)
Train	51	23
Val	46	23

Example: Drug-Like Properties Rule Induction

• Minimum coverage 30%

Profile		Desired Value	Importance
AROM	≤	2.02	
MW	≤	334.775	

Set	Mean Improvement (%)	Coverage (%)
Train	51	36
Val	45	37

• Minimum coverage 40%

Profile		Desired Value	Importance
AROM	≤	2.02	
MW	≤	444.855	
ALERTS	≤	1.01	

Set	Mean Improvement (%)	Coverage (%)
Train	44	44
Val	42	46

• Minimum coverage 50%

Profile		Desired Value	Importance
AROM	≤	2.02	
MW	≤	432.745	

Set	Mean Improvement (%)	Coverage (%)
Train	35	57
Val	35	58

Example: Drug-Like Properties Results

 Applied to independent test set of 247 oral drugs and 1000 compounds randomly selected from ChEMBL

Example: Oral CNS Rule Induction

- Data set of 1191 drugs labelled as orally administered and CNS active or not
 - By approved route of administration and therapeutic indication (noisy)
- Divided into training (667), validation (286) and test (238) sets
- Calculated ADME properties from StarDrop[™] used as input:

logP	Solubility (logS)	Human Intestinal Absorption category (HIA)
Blood-brain barrier penetration (BBB log)	Plasma protein binding category	P-gp substrate category

• Minimum coverage 20%

Example: Oral CNS Results

User Interaction

Interactively Explore Profile Building

Conclusion

- MPO is a powerful approach to select and design compounds with a high chance of success
- Rule Induction helps to guide the development of scoring profiles to select compounds for a drug discovery objective
 - Apply to any objective
 - Use experimental or calculated data
 - Not black box synergy between computer and expert
- Identify most important data to guide selection of successful compounds
 - Optimise screening strategy and prioritise experimental resources
- For more information:
 - <u>matt.segall@optibrium.com</u>
 - <u>www.optibrium.com</u>

Acknowledgements

- Tatsu Hashimoto MIT
- Optibrium team, including:
 - Iskander Yusof
 - Ed Champness
 - Chris Leeding
 - James Chisholm
 - Hector Garcia Martinez