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Overview 

• Probabilistic scoring for multi-parameter optimization (MPO) 

• Finding multi-parameter rules for drug discovery 

• Methods 

− Rule induction 

• Illustrative applications 

− ‘Drug-like’ properties 

− Oral CNS compounds 

• User interaction 

• Conclusions 
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The Objectives of MPO 

• Identify chemistries with an 
optimal balance of 
properties 

 

• Quickly identify situations 
when such a balance is not 
possible 

−Fail fast, fail cheap 

−Only when confident 
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Requirements for MPO in Drug Discovery 

• Interpretable 

− Easy to understand compound priority and how to improve 
compounds’ chances of success 

• Flexibility 

− Define criteria depending on therapeutic objectives of a project 

• Weighting 

− Take into account relative importance of different endpoints to the 
success of a project 

• Uncertainty 

− Take uncertainty into account, avoid missed opportunities 

5 *M.D. Segall Curr. Pharm. Des. 18(9) pp. 1292-1310 (2012)  
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Probabilistic Scoring 
Scoring Profile 

 

* Segall et al. Chem. & Biodiv. 6 p. 2144 (2009) 
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StarDrop Prioritisation 
Probabilistic Scoring 

• Property data 

− Experimental or predicted 

• Criteria for success 

− Relative importance 

• Uncertainties in data 

− Experimental or statistical 

• Score (Likelihood of Success) 
• Confidence in score 
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* Segall et al. Chem. & Biodiv. 6 p. 2144 (2009)  
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The Next Challenge 

• How do we choose an appropriate scoring profile? 

• Two approaches: 

− Domain/expert knowledge 

− Find the profile automatically using existing data 

• Can we score compounds automatically without losing the 
benefits of expert knowledge? 

− Avoid ‘black boxes’ 

− Maintain interpretability and interactivity 
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Finding Multi-Parameter Rules  
for Drug Discovery 



© 2013 Optibrium Ltd. 

Objectives and Challenges 

• Use historical data to find scoring profiles with which to identify 
compounds with improved chance of success 

− Any drug discovery objective, e.g. clinical, PK, toxicity... 

− Once developed, profile can be applied prospectively to find new 
compounds  

• Identify most important data with which to distinguish between 
successful and unsuccessful compounds 

− Any data can be used as input, calculated or experimental 

• Explore multi-parametric data 
− Consider properties simultaneously, not individually 

− Avoid ‘over counting’ of correlated factors 

• Rules must be interpretable and modifiable 
− Avoid black boxes 

− Synergy between computer and experts 

 

 
10 



© 2013 Optibrium Ltd. 

What is a Rule? 

• A Rule is a set of property criteria that in combination 
identify ‘good’ compounds, e.g. 

 

 

 

 

 

 

• For example, Lipinski RoF: 
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logP < 4 

Ligand efficiency > 0.3 

100 < MW < 450 

PPB category = low 

logP<5 MW<500 

HBD<5 HBA<10 
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• A Rule is a box in multi-dimensional property space 
containing significantly more ‘good’ than ‘bad’ compounds 

− Equivalent to a scoring profile 

 

 

 

 

 

 

 

What is a Rule? 
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Rule Induction with PRIM 

• The Patient Rule Induction Method (PRIM)  by Friedman and 
Fisher is an effective way to find rules 

• Top-down peeling: Start with a box covering all the compounds 

• Then repeatedly peel the “worst” sides of the current box  
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* Friedman & Fisher Stat. and Comp. 9(2), p. 123 (1999) 
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• Bottom-up pasting: “Paste” back regions that we overzealously peeled 

• We stop when pasting provides no improvement 

Rule Induction with PRIM 
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Rule Induction with PRIM 

• This peeling-and-pasting process gives us a peeling sequence of boxes 

• We select a single box from the peeling sequence based on its 
performance over the validation set 

• Resulting box corresponds to a rule for selection of successful 
compounds 
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Rule Induction with PRIM 

• After finding one box, we remove the box’s compounds from the 
dataset and start over 
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Rule Induction with PRIM 

• The result is a series of boxes, each corresponding to an 
individual rule 
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Measuring Rule Performance 
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• Mean = Average objective value in box 

− Reported as % increase over objective value for full set 

• Support = Proportion of data set ‘covered’ by box 

− Reported as % coverage 

• Specificity vs. Sensitivity trade-off 



© 2013 Optibrium Ltd. 

Variable Importance 

• PRIM does not tell us the relevance of each property 
criterion to a given rule’s predictions 

•  Cannot answer questions like: 

− Should we trade off solubility for potency? 

− Would it be valuable to generate data for a particular property? 
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Variable Importance 

• αi = false-negative rate of property criterion i 

 

 

 

 

 

21 

• Importance = 1 – αi 
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Example: Drug-Like Properties 
QED* 

• Quantitative Estimate of Drug-Likeness (QED)* 

• Combine values for 8 properties 

 

 

• For each individual property 
 desirability function fitted to  
 distribution for 771 oral  
 drugs 

• QED  calculated as geometric  
 mean of individual  
 desirabilities 

 

 

23 *Bickerton et al. Nature Chem. 4, pp. 90-98 (2012) 
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Example: Drug-Like Properties 
RDL* 

• Relative Drug Likelihood (RDL)* 

• Compare characteristics of 771 oral drugs with 1000 
randomly selected compounds from ChEMBL database 

− What property values increase likelihood of compound being an oral 
drug? 

• Used same 8 properties as                                                       
QED 

• RDL calculated as geometric  
 mean of individual  
 likelihoods 

*Yusof and Segall, Drug Discov. Today DOI: 10.1016/j.drudis.2013.02.008 
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Example: Drug-Like Properties 
Rule Induction 

• Rule induction applied to data set of 771 oral drugs and 
1000 randomly selected compounds from ChEMBL 

− Random split 70:30 training:validation sets 

• Used same 8 properties as QED and RDL as inputs 

• Minimum coverage values compared 

− 20%, 30%, 40%, 50%  

25 
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Example: Drug-Like Properties 
Rule Induction 

• Minimum coverage 20% - 2 Rules 
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Set Mean 
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Train 60 22 

Val 57 24 

Set Mean 
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Coverage 
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Val 46 23 
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Example: Drug-Like Properties 
Rule Induction 

• Minimum coverage 30% 

 

 

• Minimum coverage 40% 

 

 

• Minimum coverage 50% 
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Example: Drug-Like Properties 
Results 

• Applied to independent test set of 247 oral drugs and 1000 
compounds randomly selected from ChEMBL 
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Example: Oral CNS 
Rule Induction 

• Data set of 1191 drugs labelled as orally administered and CNS 
active or not 

− By approved route of administration and therapeutic indication (noisy) 

•  Divided into training (667), validation (286) and test (238) sets 

• Calculated ADME properties from StarDrop™ used as input: 

 

 

• Minimum coverage 20% 
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Example: Oral CNS 
Results 
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Interactively Explore Profile Building 
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Conclusion 

• MPO is a powerful approach to select and design          
compounds with a high chance of success 

• Rule Induction helps to guide the development of                 
scoring profiles to select compounds for a drug                  
discovery objective 

− Apply to any objective 

− Use experimental or calculated data 

− Not black box – synergy between computer and expert 

• Identify most important data to guide selection of successful 
compounds 

− Optimise screening strategy and prioritise experimental resources 

• For more information: 
− matt.segall@optibrium.com 

− www.optibrium.com 

mailto:Matt.segall@optibrium.com
http://www.optibrium.com/
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