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Overview 

• ‘Drug-Like’ Properties 

• Quantitative Estimate of Drug-Likeness (Bickerton et al.) 

− Multi-parameter Optimization 

− Desirability Functions 

• Beyond ‘Drug-like’: Relative Drug Likelihood 

• Results 

• Conclusion 
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‘Drug-like’ Properties 
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Drug-like Properties 
Background 

• Rules for simple compound characteristics that drugs have 
in common 

• Original and most influential: Lipinski’s Rule of Five 

 

• Many others have been proposed, e.g.: 

− Rotatable bonds 

− Aromatic rings 

− Polar surface area 

− Fraction of sp3 carbons 
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logP<5 MW<500 

HBD<5 HBA<10 
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Drug-like Properties 
Strengths and Weaknesses 

• Strengths 

− Easy to understand and apply 

− Compounds with ‘non drug-like’ properties lie in regions of property 
space with poor precedence 

− Good guide to avoid potential pitfalls 

• Weaknesses 

− Simple characteristics are only weakly predictive of biological 
properties 

− Binary pass/fail rules 

− Tendency to apply over-rigorously (is MW of 501 worse than 499?) 

− Rules apply only to objective for which they were determined (most 
commonly oral bioavailability) 

− Many are derived only from analysis of drugs, i.e. what makes drugs 
similar 
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Quantitative Estimate of Drug-Likeness (QED) 
Bickerton et al. Nature Chem. 4, pp. 90-98 (2012) 
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Multi-Parameter Optimization 
Desirability Functions 

• Combine values of multiple characteristics into single 
measure of ‘quality’ of a compound* 

• Desirability functions relate property values to how 
‘desirable’ the outcome 

 

 

 

 

7 

Simple filter: >5 
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Desired value: >5 

Multi-Parameter Optimization 
Desirability Functions 

• Combine values of multiple characteristics into single 
measure of ‘quality’ of a compound* 

• Desirability functions relate property values to how 
‘desirable’ the outcome 
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Range: 4-6 
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Multi-Parameter Optimization 
Desirability Functions 

• Combine values of multiple characteristics into single 
measure of ‘quality’ of a compound* 

• Desirability functions relate property values to how 
‘desirable’ the outcome 
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Ideal value: 5 
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Multi-Parameter Optimization 
Desirability Functions 

• Combine values of multiple characteristics into single 
measure of ‘quality’ of a compound* 

• Desirability functions relate property values to how 
‘desirable’ the outcome 
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Multi-Parameter Optimization 
Desirability Functions 

• Combine values of multiple characteristics into single 
measure of ‘quality’ of a compound* 

• Desirability functions relate property values to how 
‘desirable’ the outcome 
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Non-linear, ideal value: 5 

(Derringer Function) 
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Multi-Parameter Optimization 
Desirability Functions 

• Combine values of multiple characteristics into single 
measure of ‘quality’ of a compound* 

• Desirability functions relate property values to how 
‘desirable’ the outcome 

 

 

 

• Combine multiple properties into ‘desirability index’ 

− Additive: 

− Multiplicative: 
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QED* 

• Combine values for 8 characteristics 

− Molecular weight (Mr) 

− Lipophilicity (alogP) 

− Number of hydrogen bond donors (HBD) 

− Number of hydrogen bond acceptors (HBA) 

− Polar surface area (PSA) 

− Number of rotatable bonds (ROTB) 

− Number of aromatic rings (AROM) 

− Count of alerts for undesirable substructures (ALERT) 

13 *Bickerton et al. Nature Chem. 4, pp. 90-98 (2012) 
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QED* 

• For each characteristic a desirability function was fitted to 
distribution for a set of 771 oral drugs 

14 *Bickerton et al. Nature Chem. 4, pp. 90-98 (2012) 
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QED* 

 

 

 

 

 

 

• The desirabilities for the 8 characteristics are combined 
using a multiplicative approach: 

15 *Bickerton et al. Nature Chem. 4, pp. 90-98 (2012) 
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QED* 

• QED avoids the pitfalls of hard cut-offs 

− Provides a single metric for the ‘similarity’ of a compound to known 
oral drugs 

• Bickerton et al. showed that QED correlates with chemists’ 
opinion on ‘beauty’ of compounds 

• Benchmarked QED for selection of 771 oral drugs vs. 10,250 
compounds from the PDB ligand dictionary 

− N.B. Not a fully independent test set of drugs 

16 *Bickerton et al. Nature Chem. 4, pp. 90-98 (2012) 
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QED Benchmarking Results 
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Beyond ‘Drug-like’: 
Relative Drug Likelihood 
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Similarity is Not Enough 

• A compound with a characteristic that is ‘similar’ to known 
drugs does not necessarily have an increased chance of success 

 

 

 

 

• Some properties distinguish drugs from non-drugs better than 
others  
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Relative Drug Likelihood 
Bayesian probability theory 

• Analysis of characteristics of known drugs gives us P(X|Drug) 

• We would like to know P(Drug|X) 

• Bayes’ theorem allows us (in principle) to calculate this: 
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Relative Drug Likelihood 
Bayesian probability theory 

• Compare with probability compound is not a drug: 

 

 

• We want to find compounds with high relative probability of 
being drug, so take ratio 
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Relative Drug Likelihood 
Bayesian probability theory 

• Therefore, we define the desirability of a value x of property 
X as: 

 

 

• Need to choose appropriate negative set of non-drugs from 
which we would like to distinguish drugs 

− Choose ChEMBL database* as representative of ‘med chem’ 
compounds 

− Trained on random selection of 1000 compounds from ChEMBL and 
771 compound oral drug set from Bickerton et al. 
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Relative Drug Likelihood 
Example – Molecular Weight 
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Relative Drug Likelihood 
Analysis of 8 properties from QED 
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Relative Drug Likelihood 
PSA 
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Relative Drug Likelihood 
HBA 
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Relative Drug Likelihood 

• Combine desirabilities of individual characteristics to give 
overall Relative Drug Likelihood (RDL) 

• Multiplicative – analogous to QED 
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Results 
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Identifying Drugs 
Selecting from ‘med chem’ compounds 

• 771 drug ‘test’ set from Bickerton et al. vs. >650k 
compounds from ChEMBL (independent of training set) 
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Identifying Drugs 
Selecting from PDB ligand dictionary  

• 771 drug ‘test’ set from Bickerton et al. vs. 10,250 
compounds from the PDB ligand dictionary 
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Comparing PDB Ligands with ChEMBL 
Molecular weight distribution 
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Identifying Drugs 
Selecting from PDB ligand dictionary  

• PDB ligand dictionary is not representative of med chem compounds 

• Retrain RDL using 500 compound ‘negative’ set from PDB ligand dictionary 

• 771 drug ‘test’ set from Bickerton et al. vs. 9.750 compounds from the PDB 
ligand dictionary 
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Conclusions 

• Binary rules for selection of compounds are risky 

− Filters may throw away valuable opportunities 

• The criteria to accurately identify good compounds depend on the 
population from which we are selecting 

− We have used ChEMBL as representative of ‘med chem’ compounds 

− ChEMBL is already biased by med chemists experience, so RDL shows added value 
over medicinal chemistry ‘instincts’ 

• Could be applied to different therapeutic classes 

• Having a good RDL (or QED etc.) is not a guarantee of success 

− Relative drug likelihood 

− Remember the very small constant we ignored (P(Drug)/P(not Drug)) 

− A compound with good ‘drug-like’ characteristics may fail for a large number of 
reasons 

• Preprint and scripts to calculate RDL yourself can be downloaded from: 

− www.optibrium.com/community 
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