

Capturing and Applying Knowledge to Guide Compound Optimisation Streamlining Drug Discovery – 31<sup>st</sup> May 2018 Edmund Champness, Matthew Segall, Peter Hunt and Tamsin Mansley

© 2018 Optibrium Ltd

Optibrium<sup>™</sup>, StarDrop<sup>™</sup>, Auto-Modeller<sup>™</sup>, Card View<sup>™</sup> and Glowing Molecule<sup>™</sup> are trademarks of Optibrium Ltc

# **Overview**

- Why capture and apply knowledge computationally?
- Capturing and applying different types of knowledge
  - Chemistry
  - Structure activity relationships
  - Project objectives
- Example application
  - Optimisation of high quality, selective Anagliptin analogues
- Conclusions

# Why Capture Knowledge Computationally?

- Different viewpoints
  - Drug discovery is a multi-disciplinary field
  - Knowledge transfer
- Limited experience
  - Even within our own field, we each have limited experience
- Limited memory
  - We can only easily remember a fraction of what we have experienced
- Computers have virtually unlimited capacity and perfect recall



# Why Apply Knowledge Computationally?

- Being able to search large databases of information/knowledge is useful, but limited
- Computers can apply stored knowledge much faster than a person
- Even scientists have hidden biases\*
  - We choose which knowledge to 'believe'
- Computers can explore ideas more quickly and rigorously than a person



Knowledge is like paint... It does no good until it is applied

- Doe Zantamata

### Capturing and Applying Knowledge Chemistry – What might we make?





### Chemistry – What could we make? Reactions and Reagents



### Chemistry – What might we make? Transformations

E.g. Bioisosteric replacement



SMIRKS: ([c;\$(c!@n1@c@n@c@n1):1]n1[cH]n1)>>([c;\$(c!@C#;!@N):1]C#N)

### Chemistry – What might we make? Transformations

E.g. Bioisosteric replacement



SMIRKS: ([c;\$(c!@n1@c@n@c@n1):1]n1[cH]n[cH]n1)>>([c;\$(c!@C#;!@N):1]C#N)

SMIRKS: ([C;\$(C!@N):1][NH2])>>([C;\$(C!@N!@C!@C=;!@C1@C(@N2(@C(=;!@O)@C@C2 @O1))!@C(!@O)=;!@O):1][NH][CH2][CH]=C1[C@@H](N2C(=O)[CH2][C@H]2O1)C([OH])=O)



Chemistry – What might we make?

**Transformations** 

E.g. Prodrug strategy

### Chemistry – What might we make? Transformations

E.g. Ring opening/closing



SMIRKS: ([c;\$(c1@c@c(@n@c@n1)!@N!@C!@C):2]1[c:1]c(n[c;x2:4]n1)[NH][C:5][C:3])>>(N 21C([c:1]([c:2](N=[C;x2;\$(C1=;@N@c(@c(@C2@N1@C(@C@N=2)!@C)!@[H])!@[H]):4]1)[ H])[H])=N[C;x2:5][CH]2[C:3])

### Chemistry – What might we make? BIOSTER™

Database of ~30,000 precedented transformations from the chemistry literature



### Chemistry – What could we make? Applying Transformations



© 2018 Optibrium Ltd. Segall *et al.* J. Chem. Inf. Model. (2011) **51**(11) pp. 2967-2976

# Capturing and Applying Knowledge SAR – How are molecular properties likely to change?





### SAR – How are Molecular Properties Likely to Change? Quantitative Structure-Activity Relationships

$$y = f(x_1, x_2, x_3, \dots) \pm \varepsilon$$
 Statistical

uncertainty

- Data
  - Quality data is essential
  - Public data need very careful curation\* (and may not be good enough)
- Descriptors, e.g.
  - Whole molecule properties, e.g. logP, MW, PSA...
  - Structural descriptors, SMARTS, fingerprints...
- Machine learning method, e.g.
  - Artificial neural networks, support vector machines, random forests, Gaussian processes...

SAR – How are Molecular Properties Likely to Change? Quantitative Structure-Activity Relationships



© 2018 Optibrium Ltd. M.D. Segall *et al.* (2009) Chemistry & Biodiversity **6** pp. 2144-2151

## Capturing and Applying Knowledge Project objectives





### Project Objectives Multi-parameter optimisation



### **Project Objectives** Multi-parameter optimisation – Probabilistic Scoring

- Evaluates all available data against project criteria
- Accounts for the uncertainties in all compound-related data
- Objective assessment of compounds' chances of success



#### **User-defined scoring profile**



#### **Compounds ranked by likelihood of success**

#### 018 Optibrium Ltd. M.D. Segall (2012) Curr. Pharm. Des. **18**(9) pp. 1292-1310

### **Example Application** Optimisation of high quality, selective Anagliptin analogues





# Anagliptin



- Dipeptidyl Peptidase-4 (DPP-4) inhibitor
  - Treatment for type-2 diabetes mellitus
- Withdrawn in most markets due to animal toxicity\*
  - Concerns raised about selectivity over DPP-2, DPP-8 and DPP-9
  - Since disproved...
- Explore strategies to improve DPP-4 activity and selectivity over other DPP isoforms



#### PDB 3WQH

# **Capturing SAR for DPP Activities**

- QSAR models built with random forests method in StarDrop's Auto-Modeller\*
  - 2D SMARTS descriptors and whole molecule properties, e.g. logP, MW, TPSA...
- Data sets of pIC<sub>50</sub> data from ChEMBL<sup>+</sup>
- Validation on independent test sets:



© 2018 Optibrium Ltd. \*O. Obrezanova *et al.* (2008) JCAMD **22**(6-7) pp. 431-440 +Bento *et al.* (2014) Nucleic Acids Res. pp. 1083-1090

# Capturing the Optimisation Objectives



### Starting Point CHEMBL1929395



### Starting Point CHEMBL1929395





# Guided Optimisation Applying captured knowledge

- Cyanopyrrolidine conserved
- Selection applied at each generation based on multi-parameter profile

| 👯 Nova Setup Wizard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ? ×            | 👯 Nova Setup Wizard 🛛 ? 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specify Input Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Control Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lasso a portion of the molecule to mask it from any transformations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Generations 4 主                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\sum_{n=1}^{N} \sum_{n=1}^{N} \sum_{n$ | Strict masking | <ul> <li>Select compounds at each generation</li> <li>Method <ul> <li>Biased Diverse</li> <li>0</li> <li>Value 1</li> </ul> </li> <li>Random <ul> <li>Select compounds with High</li> <li>DPP Profile</li> </ul> </li> <li>Selection Criteria <ul> <li>The best 20</li> <li>compounds</li> <li>The best 50</li> <li>% of compounds</li> <li>Compounds with values higher than 0</li> </ul> </li> <li>Attempt all transformations after generation 1</li> <li>Limit atom count change Maximum: 20</li> <li>Allow discontiguous products</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Show results in Card View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| < <u>Back</u> <u>N</u> ext > <u>F</u> inish Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | < <u>B</u> ack <u>Next</u> > <u>F</u> inish Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### Results ~16,000 compounds explored





### Results ~16,000 compounds explored





© 2018 Optibrium Ltd

### Results Example compounds



# **Exploration of Chemical Space**



DPP-4 compounds in ChEMBL

★ CHEMBL1929395

Generated compounds

# Conclusions

- Capturing and applying knowledge computationally enables broad exploration of new optimisation strategies
  - 'Think outside the box'
  - Rigorous investigation of possibilities
- Chemistry knowledge
  - Transformations representing optimisation strategies used in the past
- SAR knowledge
  - Machine learning to build QSAR models trained on relevant data
- Project knowledge
  - Expertise of project team from different disciplines as a scoring profile
- Integrated and applied using an evolutionary algorithm
- For more information and references, please visit:
  - www.optibrium.com/stardrop/
  - www.optibrium.com/community/



# Acknowledgements

- The Optibrium team, including
  - Chris Leeding
  - James Chisholm
  - Alex Elliott
  - Fayzan Ahmed
  - Coran Hoskin
  - Aishling Cooke
- Istvan Ujváry, Julian Hayward, John Barnard
  - BIOSTER

