

Structure-Based Drug Discovery in Shanghai Hengrui

Qiyue Hu (Jerry) 11/21/2014

Brief Introduction about Hengrui

- Headquarter in Lianyungang, Jiangsu Province
- Established in 1970
- Listed on Shanghai Stock Exchange in 2000
- >6000 employees over the globe

Jiangsu R&D Center: Drug Development & CMC
 Shanghai R&D Center: Early Discovery to Preclinical Candidates
 Chengdu R&D Center: Specialty Pharmaceuticals
 US R&D Center: Early Discovery

恒瑞研发投入(R&D Investment)

- Yearly R&D spending reaches 10% of total revenue
- R&D budget for 2012 is 5.35亿元 (~56 Million GBP)

R&D Spending in Recent Years

恒瑞知识产权(Intellectual Properties)

By 2013:

- Total 380 Patent applications
- Total 81 published PCT patents worldwide

Published International Patents by Year

SBDD case studies

1. Discovery of novel conformationally restricted small molecular GPR-40 agonists

Bioorganic & Medicinal Chemistry Letters 23 (2013) 2920–2924

2. Structure-based design and synthesis of bicyclic fused-pyridines as MEK inhibitors

Bioorganic & Medicinal Chemistry Letters 24 (2014) 2555–2559

Small molecular GPR-40 agonists

N.G. Morgan, S. Dhayal/Biochemical Pharmacology 78 (2009) 1419-1427

Conformationally restricted design achieved the same level of *in vivo* **potency**

ICR mice OGTT results of compound 9b and TAK-875

Discrepancy b/t *in vitro* and *in vivo* potencies for the truncated cpds

9.7% AUC \downarrow in mice OGTT @50mpk

Rat@5mpk. PO AUC = 529,516 ng h/ml Cmax = 17,775 ng/mlT1/2 = 26.8 h

Monkey@6mpk, PO AUC = 136,301 ng h/ml Cmax = 5357 ng/ml T1/2 = 16.4 h

Rat@5mpk. PO AUC = 665,884 ng h/mlCmax = 21,950 ng/ml T1/2 = 27.5 h

Monkey@6mpk, PO AUC = 126,223 ng h/ml Cmax = 19,712 ng/ml T1/2 = 12.9 h

4.9% AUC | in mice OGTT @50mpk 11.0% AUC | in mice OGTT @50mpk

Species differences – Sequences Comparison of GPR40

Although whole seq. similarity among human/mouse/rat/monkey are all > 90%. The blue loops (a.a. 143-180) among human, rat and mouse are quite different.

At the same time, between human and monkey, the blue loops are almost identical with one exception at residue 143.

Species differences - GPR40 human homology model

To model the active site binding of TAK-875, Truncation of the extracellular loop (highlighted as the Blue Loop in the Full model) was originally used by scientists in Takeda (Negoro and et al, ACS Med. Chem. Lett. 2011).

Species differences – Putative ligand binding sites of human and monkey are identical.

Residue 143 (shown in blue stick) is quite far away from the putative ligand binding site.

Monkey may serve as a better animal model for the translation between *in vitro* and *in vivo* GPR40 activity.

Species specificity were confirmed by Rat GSIS INS-1 assay of selected GPR40 agonists

No.	\mathbb{R}^1	R ²	R ³	Chirality	$^{a}\text{EC}_{50}\left(nM ight)$	E _{max} (%)
TAK-875					93	100
28a	Br	Н	Н	R	77	40
30 a	Cl	Н	Н	R	-	36.8
31 a	Cl	Cl	Н	R	-	46.8
32a	CF ₃	Н	Н	R	-	43.6

^a Values are means of three experiments.

In vivo efficacy achieved in monkey model

IVGTT of selected GPR40 agonists in an obese type 2 diabetes rhesus monkey model

No.	Dosage	Inhibition	of AUC _{Glu}
	(mg/kg)	0-60min (%)	0-120min(%)
TAK-875	20.0	14.73	15.02
28 a	6.0	32.09	24.45
30 a	6.0	7.71	10.71
30 a	20.0	16.43	13.16

^a Values are means of three experiments.

- Selectivity against GPR41, GPR43 and GPR120 >=10 uM
- no hERG inhibition (IC50 >30 uM)
- CYPs DDI > 50 uM

co-Crystal structure of TAK-875 with GPR40 was published*

RAS-RAF-MEK-ERK pathway

MEK inhibitors in clinical trials

TAK-733

Selumetinib

ΗŅ

Key interactions of non-ATP competitive MEK Allosteric inhibitor*

*Ohren, J. F. and et al. Nat. Struct. Mol. Biol. 2004, 11, 1192.

Pyridine to Pyrimidine

Novel bicyclic series

PK and In vivo efficacy of 10a

Species	Dose (mg/kg)	C _{max} (ng/ml)	AUC (ng h/ml)	$T_{1/2}(h)$	F %
Rat	5.0, PO	1080 ± 271	4886 ± 1236	5.56 ± 1.65	_
Dog	1.0, PO 1.0, IV	117 ± 44 —	510 ± 154 1188 ± 213	4.88 ± 2.26 3.11 ± 0.35	43

恒瑞医药在研产品管线(Clinical Pipeline)

♦ > 10 novel small molecules and biologics in the clinical pipeline

Pre-clinical	Phase I	Phase II	Phase III	Launched
阿帕替尼: VEGFR 抑制剂/癌症				
PEG-GCSF:粒细胞集落刺激因子 / 中性白细胞	1减少症			
瑞格列汀: DPP-4 抑制剂/糖尿病 (phase I in U	J SA)			
法米替尼: Pan RTK 抑制剂/癌症				
海曲泊帕: TPOR激动剂/ ITP				
恒格列净: SGLT抑制剂/糖尿病				
吡咯替尼: Pan RTK 抑制剂/癌症				
呋格列泛: GPR40 激动剂/糖尿病 (USA)				
SHR0302: Jak1/风湿性关节炎				
INS-061: 长效胰岛素/糖尿病				
T-DM1: ADC/癌症				

ttt

www.shhrp.com

