Better Health, Brighter Future

Bigfoot, the Loch Ness Monster, and Halogen Bonds: Separating Rumors from Reality in Molecular Design

David Lawson Takeda California – Computational Sciences

Streamlining Drug Discovery – San Diego, CA October 23, 2018

Cryptozoology

- The study of cryptids "hidden animals"
 - Creatures believed to exist but for which there is no definitive evidence
- People believe because:
 - It's hard to prove something doesn't exist
 - There's lots of anecdotal evidence
 - Believing has a nostalgic/romantic/fun quality

Cryptid Interactions* in Drug Discovery

*Interactions that are *rumored* to exist

- Just because two atoms are next to each other in a crystal structure doesn't mean they're making a strong, favorable interaction
 - Sometimes the observed interaction is the <u>least worst</u> conformation with favorable interactions compensating for neutral/repulsive interactions
 - Take a close look at protein structures for some great examples
- Sometimes the electron density does not support the published structure (remember, crystal structures are really models)
 - See: Warren et al., *Drug Discov Today*, 2012,17(23-24):1270-8
- Sometimes the advertised interaction is only part of what's going on

Why We Have Cryptid Interactions #2

- The small atomic changes between molecule "pairs" often change multiple characteristics of a compound (electronics, conformation, etc.) Researchers often focus only on one effect of the change and ignore the others.
- Example:

Relative Energy (kcal/mol)

• Drug discovery runs on the experience of project team members:

"We should attach a <u>(functional group)</u> at that position because it increased potency 25-fold against <u>(protein name)</u> when I was on that project a couple of years ago."

• This is a great source of anecdotal evidence

Why We Have Cryptid Interactions #4

• The importance of particular molecular interactions are often overstated in the literature:

"The [30x] boost in potency [going from a pyridine to an isothiazole] could also result from a potential **sulfur-sulfur** interaction between Methionine-129 and the sulfur atom of the isothiazole ring."

Fragment-based drug discovery of potent and selective MKK3/6

inhibitors BMCL, 2016, 26(3): 1086-9

Mark Adams^a, Toshitake Kobayashi^e, J. David Lawson^b Morihisa Saitoh^e, Kenichiro Shimokawa^e, Simone V. Bigi^a, Mark S. Hixon^c, Christopher R. Smith^a, Takayuki Tatamiya^e, Masayuki Goto^e, Joseph Russo^d, Charles E. Grimshaw^b, Steven Swann^{a,*}

* Medicinal Chemistry, Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121, United States

^bComputational Sciences and Crystallography, Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121, United States

^d CNS & Novel Target ID, Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121, United States

* Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan

⁶Global DMPK, Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121, United States

First Some Math...

Takeda California

Weak Polar Interactions in Drug Design

- Well documented/understood interactions:
 - Aryl CH pseudo H-bonds
 - Aryl ring aryl ring interactions
 - Cation- π interactions
- Cryptid interactions?
 - Halogen bonds
 - Dunitz interactions
 - Sulfur-sulfur interactions
 - Sulfur as H-bond donor/acceptor
 - S-O:/S-N: interactions

Aryl CH Pseudo H-bonds

- Technically, not true hydrogen bonds: the proton is not exchangeable •
 - The hydrogen is not shared between the 2 heavy atoms
- Distance-dependent, but less directional than true hydrogen bonds •
- The distance between heavy atoms is larger and the penalty for close • approach is harsher for C-H-O bonds relative to D-H-O bonds
 - D-H hydrogens are 'softer' than C-H (more polarizable)
- Not strong/directional enough to orient a group alone but will contribute ۰ to attraction if other groups drive orientation

Aryl Ring – Aryl Ring Interactions

- Ring-Ring interactions are mainly driven by VdW interactions and entropic solvent displacement
- Keesom VdW, stronger than typical London dispersion
- Two main types of aryl ring aryl ring interactions:
 - Edge-to-face interactions
 - Face-to-face interactions

Cation- π Interactions

- Cation can be on protein (Lys, Arg, terminus) or ligand
- Often seen as part of protein structures (e.g. Arg/Trp interactions)

PDB: 4HIB

The Elusive Halogen Bond

Halogen

Ronds

 Halogen bonds are <u>not</u> hydrogen bonds

Halogen polarization is very anisotropic

		Bonas	Donas		
	Dipole-dipole interaction	Yes	Yes		
	Geometric dependency	Yes	Yes		
	"Shared" atom	Yes	No		
	Relative strength	Much stronger	Much weaker		

Hydrogen

• The p_z -orbital participates in formation of the covalent σ -bond, leaving the orbital depopulated – this partially exposes the positive nuclear charge opposite the bond (the σ -hole)

Wilcken et al., *J. Med. Chem.* 2013. 56: 1363–1388

- The σ -hole electron deficiency is compensated by an electron rich belt around the halogen
- Strength increases with the size of the halogen (because the electrons are more polarizable): Cl < Br < I (not fluorines)

Charge surface from: Yang et al., J. Mol. Model 2015, 21: 138

Takeda California

The σ -Hole isn't Everything

- In addition to the X•••O interaction, the permanent dipole of the electronegative halogen "waist" interacts with induced electropositive dipoles of surrounding hydrogens:
 - Debye Forces (between permanent/induced dipoles) are stronger that London Dispersion Forces (between induced/induced dipoles)

MEK1 crystal structure 3EQB as shown in Wilcken et al., *J. Med. Chem.* 2013, 56, 1363–1388

A closer look reveals that >90% of the iodine surface interacts with the surrounding hydrogen atoms

Hydrogen/Halogen vs. Oxygen/Halogen Interactions

- 10,924 liganded structures from PDB (curated ligands)
 - Protonate the structures using GBSA
 - Minimize the protons

Halogen	#	Atoms: 4.5A	Hydrogens (% of atoms)	Oxygens (% of atoms)	CX—O <u>≥</u> 170° (% of O found)	Nitrogens (% of atoms)	Carbons (% of atoms)
1	103	2,297	1,319 (57%)	160 (7.0%)	20 (12.5%)	131 (5.7%)	669 (29%)
Br	284	6,280	3,692 (59%)	314 (5.0%)	7 (2.2%)	305 (4.9%)	1,927 (31%)
CI	1,472	25,678	14,155 (55%)	1,741 (6.8%)	34 (2.0%)	1,258 (4.9%)	8,319 (32%)
F	1,074	43,514	25,058 (57%)	2,817 (6.4%)	28 (1.0%)	2,265 (5.1%)	13,617 (31%)

• Bigger halogens \rightarrow more surface to interact with hydrogens

 \rightarrow more solvent displacement

Takeda California

Dunitz Interactions

- The carbon atom in a carbonyl is slightly electropositive
- Interactions with the carbonyl carbon are known as Bürgi-Dunitz interactions or (usually) Dunitz interactions
 - The partner is weakly electronegative and has the correct sterics to approach the carbonyl (F and Cl are the usual suspects – sulfurs work too)
 - These are relatively weak dipole/dipole interactions
- Interaction with a chlorine can form a multipole interaction:

Bissantz et al., *J Med Chem.* 2010 Jul 22; 53(14): 5061–5084.

Sulfur-Sulfur Interactions

- Usually occur between an aromatic sulfur in the ligand and a Met or Cys residue in the protein
 - Thiols and alkyl thioethers not usually used for medchem
 - Thiones and diaryl thioethers are uncommon
 - The sulfur of sulfones and sulfonamides is not accessible.
- Sulfurs are mostly big and lipophilic
 - Methionine sulfurs are slightly δ-
 - Aromatic sulfurs are slightly δ + and have a σ -hole like halogens
 - − Diffuse electrons \rightarrow polarizable and malleable shape
- Like when adding halogens, more that one thing changes when a sulfur is introduced (conformation, electronics, etc.)

• From the MKK3/6 example shown earlier:

"In this model, the isothiazole is within an acceptable distance for a favorable interaction with Lysine-82. Additionally, the sulfur likely maintains the planarity of the system, as well as the preferred conformation of the ring. The boost in potency could also result from a potential **sulfur-sulfur** interaction between Methionine-129 and the sulfur atom of the isothiazole ring."

- Changing 4-pyridine to isothiazole yields a 30x potency boost
- S•••S interaction is plausible:
 - The sigma hole of aryl sulfur is roughly oriented towards Met sulfur
 - The distance is reasonable within error (this is a model, not a crystal structure)
- There are several other factors that are contributing to the potency increase
 - Higher quality H-bond to the Lys (electronics and geometry)
 - Less ligand strain

Adams et al., BMCL, 2016, 26(3): 1086-9

Takeda California

20

Sulfurs and H-Bonds

- Sulfurs are not great H-bond donors (cysteine donating to ligand)
 - About ~1/3rd the strength of normal Hbonds
- Sulfurs are poor H-bond acceptors
 - Probably won't make up the desolvation penalty
 - Watch out for the σ -hole!

21

Sulfur-Oxygen & Sulfur-Nitrogen Interactions

- S•••O: and S•••N: interactions appear to be important for intramolecular interactions
 - Lower energies involved in influencing a few dihedrals
 - Scaffolding enables easy access to favorable geometries
- No overwhelming evidence for impactful intermolecular interactions
 - Higher energy needed to be relevant for protein-ligand interactions
 - Beno et al., J. Med. Chem. 2015, 58: 4383-4438
- "Theoretical and crystallographic data investigations of noncovalent S•••O interactions" (Junming et al., *Structural Chemistry*, 2011, 22(4): 757-63)
 - 50,000 X-ray crystal structures w/ Met and 3.0 Å or better resolution
 - ~14% of structures contained <a>1 Met-S•••O=C contacts meeting geometry/distance cutoff
 - Total of 12,830 contacts (0.25/structure average)
 - Caveat: only about half of them are making putative σ -hole interactions
 - Control: 10,812 human X-ray crystal structures w/ Met and 2.2 Å or better resolution
 - ~95% of structures contained <u>></u>1 Met-NH•••O=C hydrogen bonds
 - Total of 98,653 contacts (9.1/structure average)

Takeda California

22

The Cryptid Scorecard

The Bottom Line

- Most (but not all) of these "cryptid" interactions are real, favorable intermolecular interactions
 - Individual atoms are polarized different faces have different electrostatics
 - All of these interactions have many subtleties that impact their effect on potency
- These interactions by themselves won't bring you huge gains in potency
 - None of these interactions are as strong as H-bonds
 - Sometimes large potency gains are observed due to the direct enthalpic interaction **plus** other effects (e.g. entropic effects, electronic changes, conformational preference changes)

• Focus molecular design on shape complementarity, H-bonds, and low strain

- A single hydrogen bond can offset the entropy loss from ligand ordering and will orient a molecule due to the angles, properties, and strength of the bond
- These interactions are most beneficial once a ligand has already been ordered, as entropy has been already paid
 - Considerer them as secondary interactions once the majority of the ligand ordering entropy has been paid

Just because something isn't a cryptid doesn't mean it's not cool

Thanks!

Andy Jennings

Tony Ivetac

Steve Wilkens