

We Discover and Develop Innovative Medicines for a Healthier World

Leads Identification: Where Science Meets Art

Mehran Jalaie (MJ)

"All procedures performed on these animals were in accordance with regulations and established guidelines and were reviewed and approved by Pfizer Institutional Animal Care and Use Committee."

> Pfizer Inc. La Jolla Laboratories 10614 Science Center Dr. San Diego CA 92121 858-526-4065

Leads Identification

- 1. High Throughput Screen (HTS)
- 2. Parachute
- 3. Virtual Screening (VS) and Hit Follow-ups
 - Classical VS (high costs)
 - Structure-Guided Pharmacophore Method
 - Hit-Follow-ups
 - Current approaches (better and faster)

Most Projects Don't get HTS!

VS hits identified 20/55

VS applied 27/55

0									
Concept		ESD		SDS		LD	CS		BU
	1	2	3	4	56	7	8	9	10
CNS		mGluR4	STEPi	mGluR4 PAM	MT-1/2	5HT6 antag	Alpha2a		NRI
				GABA B Mod	GABA-A2	D2/5HT2/SRI			D2 PA
				a2d subtypes	Nav_lowD2	D2PA/SRI			
					Lamotrigine+	NRI/5HT1a			
AB				НРРК	BC	NRI/D4			
				MurG	PheRS	LpxC			
				GImU	Smc Ag	GyrATPase			
		001/0			Smo Ag				4.5
DERM		GSK3		MC5R	S1P	Alk5			AR
				PDGF	SCD-1				
INT			DTK	DDD	PAD4				
INF			BIN	PBR	PDE2	IL6-mAb			
			C1S	CPLA2a	S1P1	FAAH			
CV			DCSKO	IRAK4	UN I				ARB+
		FLAP	PLOKS	F11a	SKY	LTCC			
			PAR1	F9a	SPT				
			SQS-i	P2Y1	NPC1L1				

27 programs have applied virtual screening

5/16/2017

20 programs have identified chemical matter by virtual screening

3

No HTS?

`

Classical Virtual Screening

- Virtual Screening: what it used to be ...
 - PfiSearch / other 2D methods
 - ROCS/EON or Pharmacophore

- Success stories at high costs:
 - Lamotragine+ no chemistry
 - LTCC no scaffold

CAN (Candidate Alert Nomination) CAN

PfiSearch Similarity Search

3D Molecular Graph

Vertices are defined as atom typesEdges are defined as distances or distance ranges

Distance Geometry

Establish the graph edge distance bounds as the minimum and maximum allowed distances between two atoms

3D MCS

- •Largest subset of atoms common to both Structures such That:
- Atom types are compatible
- Atom-pair distance ranges in both structures are compatible
- (*i.e.*, overlap to an acceptable degree)

ROCS

- ROCS (<u>Rapid</u> <u>Overlay of</u> <u>Chemical</u> <u>Structures</u>)
- Rigid shape-based superposition
- The molecules are aligned by maximizing the overlap volume
- Not using hard sphere representation
- Can use overlap of functional groups (donors, hydrophobic...): <u>Pharmacophore on the fly</u>.

The "Shape" of Ligand-Based Design

Cinderella's Slipper

"The Prince picked up her slipper and said to his ministers, "Go and search everywhere for the girl whose foot this slipper fits.

I will never be content until I find her!" So the ministers tried the slipper on the foot of all the girls... and on Cinderella's foot as well... Surprise! The slipper fitted perfectly...."

From the Fairy Tale of Cinderella

Classical Virtual Screening Tools

- Ligand-based Approaches:
 - PfiSearch
 - ROCS/EON(3D)
 - How it works
 - •ROCS/EON
 - •PfiSearch / 2D searches
 - The overlap between both methods
 - •Each method has its unique strength and merit
 - •The top ranking hits from each method should be tested as well

Genuine active hits <u>must exist</u> in the screening collection before you can identify them

Lamotrigine+ project

- For the project, a source of novel chemical matter required for several reasons: a) >10 companies pursuing similar product profile (personal communication), b) lamotrigine chemotype well explored by GSK and others, therefore lamotrigine-like chemospace will be/get crowded
- In addition to using lamotrigine (control seizures) as a 3D probe, carbamazepine and phenytoin (bipolar disorder) would provide greater diversity in the identification of chemical matter.

The Project Achieved Its Goal: High Costs 800/30000 = 2.6 %

*Hit = % inhibition \geq 50 at 30 and 10 μ M

L & T Calcium Channel Blocker (LTCC)- Hypertension PF-103 and PF-105

- 1. Virtual screen was initiated with known L-type calcium channel antagonists probes.
- 2. Looking for different scaffolds with better PK with L and T activities:
- 3. 5000 compounds were tested
- 4. 150 compounds were found to have confirmed activity (150/5000 = 3.0 %)

PF-106:Chemistry focused on the DHN series

5/16/2017

We Discover and Develop Innovative Medicines for a Healthier World

Structure-Guided Pharmacophore Method

Medicinal Chemistry La Jolla

5/16/2017

PKC (Protein kinase C)

Therapeutic hypothesis:

Inhibition of PKC kinase has the potential to:

• Block tumor growth, invasion and metastasis

Specific Goals:

Develop small molecules capitalizing on the crystal structure and existing chemical equity:

- Potent, selective inhibitors of PKC with favorable overall properties for an oral drug
- Potent suppression of tumor growth and metastasis in vivo
- Little, if any effect on normal differentiated cells

Goal

 Identify novel hits prior to HTS by testing less than 300 compounds

Considerations

- Not interested in traditional Virtual Screening methods: how do we go about from @7 million compounds to 300 compounds with potential lead qualities for PKC?
- Using existing Co-x'tal effectively to select compounds

Why a Structure-Guided Directional Pharmacophore? PF-107 Ki = 0.98 nM clogP = 4.8 MW = 464 PF-108 Ki = 0.18 nM clogP = 2.8 MW = 434 PF-109 Ki = 16.6 nM clogP = 2.2 MW = 297 PF-109 Ki = 16.6 nM clogP = 2.2 MW = 297

The Directional Feature **Pharmacophore & Excluded Volume**

The Strategies

- Built a structure-guided pharmacophore using <u>directional</u> features
- Searched Pfizer collections of <u>7 million compounds</u> with the structure-guided pharmacophore
- 5628 matched 3 features and the excluded volume
- 5628 docked into 3 conformations of the enzyme without water molecules
 - One feature must be maintained to the hinge
 - Filtered heavily (MW< 450, cLogP 3.5, acceptable Strain Energy and Availability): 308 Hits.
- **308** triaged to **235** sent for testing

Results: 58 active / 235 tested = 24.7% 44/235 = 18.7% (Ki < 1uM)

 PF-110
 PF-111
 PF-112

 Ki = 300 nM
 Ki = 75 nM
 Ki = 11 nM

HTS: 1017/66226 = 1.1 %

Summary

Medicinal Chemistry La Jolla

Hinge Swapping Strategy

The Strategy

- Crystal Structure Database Base (CSDB) consists of thousands of kinase complexes.
- We extracted the kinase complexes.
- Hydrogen bonds geometries were analyzed for identifying the "hinge binders".

For Each Kinase Co-crystal Structure in CSDB, Determine Whether or Not it Forms at Least One H-bond with the One of the Hinge Residues(H4, H5, H6 and H7)

		R
0.	N	0
R6	NH	
HN	0	
R7		

Hydrogen bonds between the ligand and the hinge residues are determined based on geometric criteria:

💐 H Bond Criteria 🛛 🤶 🤶					
Heavy Atoms Distance Low: 2.6 High: 3.4 Angstroms					
H-A-X Angle Low: 90 High: 180					
D-H-A Angle Low: 90 High: 180					
<u>O</u> K <u>C</u> ancel <u>Apply</u>					

- Once a ligand was found to form H-bond to a hinge residue, the hinge binding fragment was extracted.
- If a ring fragment directly formed hydrogen bonds with the hinge, all ring atoms were extracted.
- In case the H-bond was through a non-ring atom, the algorithm found and extracted the nearest ring fragment in addition to the non-ring atoms that form the H-bond.

Output is a Collection of Unique Hinge Fragments Marking: Marking -500 Color by: 450 Count(Target) (None) 🔻 All values 400 350 300 250 200 150 100 50 0 ×≤-2.00 -2.00 < × ≤ 0.00 $0.00 < \times \leq 1.00$ 1.00 < x ≤ 2.00 2.00 < x ≤ 3.00 $3.00 < x \le 4.00$ $4.00 < \times$ **Binned cLogP** Scatter Plot Marking: 2 Marking 👻 Marker by: 6 (Row Nu... 👻 + 👻 ė Color by: ė target_1 💌 + 💌 cLogP ABL 3 ACK1 ActRIIB ALK 2 ALK2 ALK5 ASK1 AURA 0 BRAF BTK - 🛄 --1 CDK2 CHK1 😐 📥 ė É CK1G3 -2 CKld CKIT CLK2 PAK4-PAK6-PCTAIRE-PDK1-PIM1-PKCt. OCK1 TNIK. ALK5 9.SK1 DAPK1 DAPK3 DYRK1a DYRK2 EGFR EphA2 EPHA3 038-ga... PAK1 ABL ACK1 ctRIIB 9,LK2 CHK1 CHK1 CK1G3 CK1G3 CLK2 CLKG JAK2 NEK2 8 RON SYK ÅĽĶ AURA BRAF ξĦ SKIT ξ. EphA7 EphB4 INSR RAK-4 Ě **IAKG** ş MLK1 Mps1 CLK3 CSK DAPK1 DAPK3 **Targets** DYRK1a

• For example, the source of pyrazole as a hinge binder was 2UW7 (PKA kinase).

Re-attached the Extracted Hinge to a Core of Our Choice

920 Hinge Binders were re-attached to two cores below from PF-118 and PF-119.

Applications of physical property filters (MW < 500 and cLogP < 3.00) reduced the number of enumerated compounds to 618.

Modeling

- All the enumerated products were docked by <u>Glide SP</u> into the co-crystal structure of PF-118 in the absence of water molecules.
- All the docked poses were rescored with HT, and the local strain energies (AMBER and OPLS2005) were calculated.
- After removing strained* molecules and focusing on molecules with high calculated LE (< -0.2), 67 hinge binders remained.
- Based on the score, visual inspection and the level of the risks (selectivity), only a handful of hinges were selected for synthesis.

* Charifson et al; J Med Chem. 2004 May 6;47(10):2499-510

Interesting Hinge Binders Score/Visual

Reality ...

• Series of singletons were followed up to test the idea of hinge replacement for the above cores.

295 n M

85.9 nM

93.0 nM

3/28/2

Conclusion

- Successfully identified more than 8 new hinge binders using a <u>practical approach</u>
- Extracted and re-attached <u>existing</u> hinge binders our lead series
- The new hinge binders are diverse and potent for our series.

We Discover and Develop Innovative Medicines for a Healthier World

Virtual Screening: Better & Faster

Virtual Screening Infrastructure

3D Database Preparation Workflow

Data Fusion: What is it?

- Combining scores from disparate methods to rank overall results
- Aims to reduce noise by combining results from several methods (presumably "true positives" will rank better by consensus)

Data Fusion: What Isn't It?

- Data fusion is not a cure-all
 - It will enhance the signal present in existing data, but will not create a signal if it isn't already there
- Data fusion is not a way to combine unrelated data
 - Although you will always get results, this is a garbage-in, garbage-out operation; the better the input data, the more usable the output
- Data fusion is not a way to avoid solid experimental design
 - You have to understand what you are looking for, in order to find it

Validation Set

Chose four diverse targets with a crystal structure, validated known actives, and fullfile HTS screening results

Raw scores from individual virtual screening runs

Sum Score

Avg(EF_1pct), Median(EF_1pct)

Z2

Z3 Z2_Hybrid Z3_Hybrid Sum_Recip_Rank

DataFusion_Method

Aside: Which Data Fusion Rule Do I Use?

- Some thoughts:
 - There is little difference among the Z(N) and Sum-Reciprocal-Rank fusion rules for most cases;
 - And... these generally outperform the other methods.
- Why was Sum-Reciprocal-Rank chosen as the default?
 - Reasonable theoretical basis (Willett paper)
 - Uses all of the data, unlike Z(N)

The Protocol of Everything

3

Experimental Design

- The protocol <u>cannot</u> prevent jobs where 2D, ROCS, pharmacophore, and docking are completely unrelated
- You must keep in mind what your desired endpoints are (e.g. lead discovery versus hit expansion) and plan accordingly
- Data Fusion will rank recurring hits higher so choose methods that compliment your desired outcome!

Examples

