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Thank you in advance for your patience!
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This will NOT be a technical presentation. Sorry about that!

| have been an industrial medicinal chemist for 25 years.
— 11 years at Novartis (arthritis, inflammation)
— 14 years at Millennium/Takeda (oncology)

| am definitely NOT a cheminformaticist or computational chemist,
but | have a lot of interest in the field, and greatly appreciate the
value.

Today, | will present my perspective on the evolution of
cheminformatics over the course of my career, and what key
challenges lie ahead.



What were things like 25 years ago for a medicinal
chemist?

Typical chemistry throughput might be 10 compounds/chemist/month

An “HTS” might be 10,000 compounds/month

Very limited use of assays beyond primary screens.
— 1 or 2 datapoints per compound.

What was the state of “cheminformatics” 25 years ago?
— Medicinal chemistry databases were just being introduced
— MDL was the only game in town
— Most project teams kept assay data in private databases (or spreadsheets)
— Until ~2000, the key challenge was getting data into a searchable database



Remember when this was state of the art?
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Customizable GUI, multiple display options, structure and data searching



Volume of data has exploded in past 25 years
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More compounds More data per compound
Routine HTS screens of >10° * Extensive cross target
compounds selectivity screening
High-throughput synthetic * Broad target-class screens
chemistry (eg. Kinome panels)

New ultra-high-throughput * Routine HT predictive ADMET
screening approaches (eg. DNA- screening

encoded libraries)

» Predictive modeling generating
Enormous “virtual” compound lots of “virtual” data
libraries.

e Large external chem/biology
External vendors with vast databases (pubchem, chembl,
catalogs of compounds etc.)



Cheminformatics has come a long way...
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* Global, user-friendly chemistry/biology databases are commonplace (if
not universal)

e Predictive modeling has become much more mainstream

e Broad implementation of electronic notebooks has made even “raw
data” accessible.

 Entirely new ways of analyzing data have taken hold:
— Dynamic querying and visualization tools (spotfire, etc.)
— Multi-parameter optimization methodologies allow more “holistic” analysis
— Specialty tools (MMP, activity landscape analysis, etc.)
— Clustering, framework analysis



Chemistry Dashboards integrate data seemlessly
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These changes have redefined the challenge in
fundamental ways

e 25 years ago, the goal was to make data available to allow chemists to
review SAR data manually.

— We couldn’t envision tools to allow for more than that.
— The datasets were small and simple enough to make this practical

 Today, datasets are far too large and complex for chemists to

consume, analyze and draw conclusions manually from the data they
receive.

 The key cheminformatics challenge is to enable chemists to make
optimal use of all this data:

— Construct testable hypotheses
— Effectively prioritize design ideas
— Assist chemists’ imagination in generating new approaches



The Great Computational/Med Chem Divide
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There are several challenges in supporting med chemists in working
with large datasets:

e Med chemists don'’t like math!
— We tend to think visually, rather than mathematically.
— Outcomes of statistical analyses must be conceptually straightforward.

e Chemists don’t deal well with uncertainty:
— A chemical structure is absolute. Biological data is not.

 There is no perfect way to parameterize a chemical structure:
— Chemists may not agree with calculated similarities, clustering, etc.
— Meaning of atom connectivities can be very context-dependent.



Dumbing down the data
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« If chemists don’t like math, and struggle to conceptualize large
datasets, then let’'s keep it simple.

e Create “rules” that any idiot can obey:
— Lipinski Rule of 5.
— Internal cut-offs imposed by many pharma organizations

e But can this possibly be right?
— Aren’t these things context dependent?
— Is MW of 495 really infinitely better than MW of 5057
— If lipophilicity is low, couldn’t we back off on our MW cut-off?



Is there a better approach?
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« Unintuitive mathematical constructs have limited appeal.
e Oversimplification can lead to erroneous decision-making

e Datasets are too large and complex to expect a chemist to retrieve
all potential value through manual inspection.

 How do we help chemists in a way that plays to their strengths?

— Data visualization

— Computational identification of data “gems”



Visualization: a big breakthrough

ONCOLOGY

« Spotfire introduced the concept of interactive visualization to
medicinal chemistry and drug discovery

— Bridged the gap between manual SAR analysis and statistical methods.

— Allowed chemists to be in control: view data from variety of
perspectives, pose gquestions that can only be answered with aggregate
data.

— Qutputs are visual, not mathematical.

— Allowed for real-time, iterative data interrogation and hypothesis
generation
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Example: No obvious trends across data-set
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Is there a trend if we only look at amines?
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How about amines with logp < 3?
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Another Breakthrough: finding the data “gems”
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 Sometimes, the most important data is “small”:
— The comparison of a few datapoints may tell a critical story

 But how do chemists pick that out from all the noise?

« Cheminformatics has helped chemists to home in on key data:
— Matched molecular pair analysis
— Activity landscapes



The Power of Matched Molecular Pair Analysis

ONCOLOGY
H H H H
A,A A ,A:A A=N0O,S,C A,A ,A:A B : :
u J—H O A HpH ——— i )—FOr A )—F A H ——> A F
~A A-A ~A A-A
H H H H
%

Assay Endpoint n A SE SD % Source Assay Endpoint n A SE SD o Source
Mean Improve Mean Improve

log D, ,(all Hto F) 9902 7.7 (2 fold) Papadatos [20] logD . 252 +0.18 044 49(3.2fold) Dossetter [15]

log Aq. Solubility 1572 -0.10 <001 034 24(1.6fold) Gleeson [19]

log Aq. Solubility

log Aq. Solubility 4273 17 (2 fold) Papadatos [20] (from solid) 711 022 002 036 34(all>0) Leach [12]
(all H o F)
Cytochrome P450
inhib pICy,
1A2 1244 003 <001 045 32(1.6told)
209 2683 +004 <001 037 23 Gleeson [19]
2C19 1860 +004 <001 037 22
2D6 2087 +0.03 <001 041 23
3A4 2297 +007 <001 042 21
Human PPB K, 171 +0.06 002 029 65 (all>0) Leach [12
Rat PPB K, 407 +0.15 001 029 77 (all >0) Leach [12
AZ HLM log CI,,, 497 006 002 036  8.6(3.2fold Dossetter [15]
PfHLM log CI,,, 491 92 (2fold)  Lewis [14]
Permeability (log 9 5 Rat Oral Bio-
nMs) 2848  +001 <001 032 15(2fold) Gleeson [19] availability log AUC 551 +.09 003 065 55(@ll>0) Leach [12]
Rarie-Vize 96 011 004 Sutherland [21]
Unbound Clearance
Potency at target Potency at target
classes pICy, classes pICsyg Swiss bio-
(Ul Hto Iy : Hajduk [8] : : isoeter —
Kinases (7) 942 3.8 (10 fold) Kinascs (57) 291 006 003 052 28(2fold) ChEMBL data-
Class 1 GPCR (9) 642 1.4 (10 fold) Class 1 GPCR (110) 1305 +0.00 002 037 27(2fold) lr41inin [
Others (14) 1003 3.7 (10 fold) Ion Channel VGC (9) 34 +0.02 006 038 18 (2 fold) g
hERG plC;, 1572 -0.10 001 034 24(2fold) Gleeson [19] hERG 8 +0.04 009 024 13(2fold)
hERG pIC,, S——
@lHtoF) 4243 18 (2 fold) Papadatos [20]
| I
H H
1 Potency:- Kinases (O) GPCRs () Solubility[] RatPPB | Hum PPB ||
Al H —_— A F
HLM{] RatFAUCf hERG O
H H H H
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Need for Enhanced rigor with MMPA?
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Activity Cliff Pathways
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Paradigm shift: Multi-parameter optimization
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Historically, chemists have relied on filters for decision-making
— Selection of compounds for secondary, tertiary screening
— Choosing compounds to synthesize or purchase.

e Very simple to implement and conceptualize

e Serious drawbacks:
— Greatly exaggerates small differences in parameter values
— OQverly rigid: filter values not impacted by other parameters

— Order of filters can have unintended consequences:
* Good compound can be lost early if it barely misses the first filter.

« MPO allows chemist to take all parameters into account
simultaneously



Marriage of visualization and MPO: Golden Triangle
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Figure 4. Comprehensive combined in vitro clearance and in vitro permeability
trends across molecular weight and logD. 16,090 total records sized by record
count.

T. W. Johnson et al.. Bioorg. Med. Chem. Lett. 19 (2009) 5560-5564

Figure 3. Comprehensive in vitro HLM clearance trends across molecular weight

Figure 2. Comprehensive in vitro Caco-2 AB permeability trends across molecular :
and log D. 47,018 total records sized by record count.

weight and log D. 16,227 total records sized by record count.

o Attempt develop more robust model for PK optimization

o Case is made primarily through visualization of multi-dimensional
data



Probabilistic Scoring in Stardrop
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e Stardrop allows chemist to control p'arameter weighting and selection
Visualization allows chemist to readily see impact of each parameter



Predictive modeling: then and now
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« Pitfalls of predictive modeling in the 90’s:
— Focus on building “global” models that try to explain everything.

— Use of “opaque” statistical methods (PLS, PCA)
— Lack of clarity regarding limits in predictiveness

* Predictive modeling fell out of favor:
— Frustration of chemists who didn’t understand models, and couldn’t
determine their limitations.
— Backlash from “overhype” (companies overselling modeling software)

— No good way to incorporate into chemistry workflow

 We are now seeing a resurgence in predictive modelling:
— Better understanding of limitations and appropriate uses.

— Greater focus on local models.
— Visualization tools allow chemists to interact with models, and
understand drivers of predictions



What has this innovation given us?
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« Chemists can now effectively interrogate large datasets, discover
trends, and form hypotheses.

 Chemists can find the “data gems” that could easily be lost in the
noise of large data-sets.

« Chemists can apply predictive modeling to real-world problems, and
understand when and how it can be used.

e Chemists can be much more sophisticated in prioritization and
decision-making



So, what are the next challenges?
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Better utilization of external data:

— Integration of large external databases with internal tools.
— Effective means of handling heterogeneous data-sets.

— “Real-time” data extraction and collation

Better integration of bio-informatics and cheminformatics:

— Improved methods for prediction of potential targets and off-targets.
— target-hopping

— phenotypic screening

Better integration of informatics tools into chemistry workflows

Help chemists manage their own pitfalls.



SEA: Predicting activity via chemical similarity
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Table 1 | New drug-off-target predictions confirmed by in vitro experiment
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Lounkine, et. al Nature, vol. 486, p.361

* Predictions derived from analysis of ChemBL database
 Tremendous potential value for phenotypic screening



Help chemists Avoid Pitfalls
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Computational approaches can help chemists to avoid pitfalls:

» Over-interpretation of statistically insignificant SAR
— Too few datapoints, insignificant data differences.
— Assist chemist to design experiments to enhance robustness.

 Tendency to form SAR assumptions, and not challenge them sufficiently.
— “There’s no way an amine would be tolerated in that location...”

— What is the basis of the assumption? Is it valid? How would it best be
tested?

 SAR “white-space” exploration is not usually done systematically.

O - 7
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Thank you for your
attention!!

Enjoy the rest of the
symposium
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