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“We demand rigidly defined areas of doubt and 
uncertainty”
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Douglas Adam’s, The Hitchhikers’ Guide to the Galaxy
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Overview

• Uncertainties in model predictions
− Domain of applicability

• Introduction to Gaussian Processes (GPs)

• Simple illustration of GPs
− Uncertainty related to ‘domain of applicability’

− Dealing with data variability as a source of uncertainty

− Handling ‘missing’ or sparse data

• Automatic relevance determination
− Identifying most important descriptors

• Practical example of GPs applied to QSAR

• Conclusions
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Uncertainty in Model Predictions



© 2016 Optibrium Ltd.

Quantitative Structure-Activity Relationships

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … )  

• Data

− Quality data is essential

− Public data needs very careful curation* (and may not be good enough)

• Descriptors, e.g.

− Whole molecule properties, e.g. logP, MW, PSA…

− Structural descriptors, SMARTS, fingerprints…

• Statistical fitting or machine learning method, e.g.

− Multiple linear regression, partial least squares

− Artificial neural networks, support vector machines, random forest, 
Gaussian processes…

5*Waldman et al. JCAMD (2015) DOI: 10.1007/s10822-015-9865-0

Statistical 
uncertainty
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Sources of Uncertainty in Model Predictions

• Experimental noise in training data

• Descriptors may not capture all sources of variation

− Modelled property may not be ‘smooth’ in descriptor space, limiting 
ability to interpolate

• New compound may be ‘different’ from those used to train 
the model

− ‘Domain of applicability’

− Models often have a limited ability to extrapolate beyond the 
descriptor space represented by the training set

6
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Assessing Predictive Ability
Domain of Applicability

• The diversity of the 
training set defines the 
domain of 
applicability of the 
model

• The position of a new 
compound relative to 
the domain of 
applicability should be 
reflected in the 
reported confidence in 
the prediction

• Can we do better than 
‘in’ or ‘out’ indication?
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Assessing Predictive Ability
Dealing with ‘gaps’ in coverage

• Distribution of the 
training set may not be 
uniform and there may 
be ‘gaps’ or sparsely 
sampled regions

• Is this compounds ‘in’ 
or ‘out’ of the domain 
of applicability?
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Introduction to Gaussian Processes (GPs)



© 2016 Optibrium Ltd.

Modelling Techniques: Gaussian Processes

• A machine learning method based on Bayesian approach 

• Advantages:

− Does not require a priori determination of model parameters 

− Nonlinear relationship modelling  

− Built-in tool to prevent overtraining - no need for cross-validation

− Inherent ability to select important descriptors 

− Provides uncertainty estimate for each prediction

• Sufficiently robust to enable automatic model generation

12Obrezanova et. al. J. Chem. Inf. Model. (2007) 47(5) pp. 1847-57
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Modelling Techniques: Gaussian Processes

• Define prior distribution over 
functions (controlled by 
hyperparameters, covariance 
function – ARD function)

• Posterior distribution: retain 
functions which fit experimental 
data

• Prediction is the mean of 
posterior distribution.

• Standard deviation of the 
distribution provides estimate of 
the uncertainty in prediction

13
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Gaussian Processes: Hyperparameters

• Learning the Gaussian Process  ~ finding hyperparameters

− Optimize the marginal log-likelihood (prevents overtraining)

− Fits parameter corresponding to estimate of noise in input data 
(assuming normally distributed)

• Techniques for finding hyperparameters

− “Fixed” values for length scales. Search for noise parameter 

− Forward variable selection provides feature selection 

− Optimisation by conjugate gradient methods

o Length scales show which descriptors are most relevant 

− Nested sampling 

o Search in the full hyperparameter space  

o Search does not get trapped in local maxima   

14
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Gaussian Processes: Nested Sampling

• Illustration for 2 variables 

• Find maximum of likelihood:

variable 1
va

ri
ab

le
 2

Obrezanova et. al. J. Chem. Inf. Model. (2007) 47(5) pp. 1847-57



Simple Illustration of GPs
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‘Toy’ Example
Training set from sin function in 1 dimension
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Partial Least Squares
Linear model not appropriate
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Partial Least Squares
Linear model not appropriate
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Radial Basis Function Model
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Gaussian Processes (Nested Sampling)
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Training Set with Noise
Normally distributed error with standard deviation of 2

23

-15

-10

-5

0

5

10

15

-6.3 3.7 13.7 23.7 33.7 43.7 53.7 63.7

y

x

sin function Training set



© 2016 Optibrium Ltd.

RBF Model of Noisy Data
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GP Model of Noisy Data
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Training Set with Missing Data
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GP Model Built with Missing Data
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Automatic Relevance Determination
Identifying most important descriptors
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Experiment
Detecting relevant descriptors

• 100 training data points

• One descriptor (x) with perfect                                             
linear correlation with property (y)

• Hide this descriptor in a data set containing Nrandom

randomly generated descriptors

• Can a method find the relevant descriptor?

29

Identifier y x Rnd 1 Rnd 2 Rnd 3 Rnd 4 … Rnd Nrandom

Compound 1 0 2 1.252494 4.741985 2.14597 9.457343 3.958759 4.780421

Compound 2 1 2.1 8.64592 1.747653 6.76429 3.99527 7.626024 8.251326

Compound 3 2 2.2 7.064635 5.553097 0.355306 9.588649 2.791829 9.871042

Compound 4 3 2.3 4.783329 5.126768 3.525646 2.39005 0.392087 7.550868

… 4 2.4 7.077723 1.938555 2.028159 7.487378 9.672227 9.300353

Compound 100 99 11.9 0.588886 7.136536 9.538188 1.295742 3.522841 9.480185
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Assessing Predictive Ability
Validation of Regression Models

• Coefficient of Determination –

− Measure of fit to identity line y=x

− N.B. Not the same as square correlation coefficient r2
corr which is 

measure of fit to best fit line – R2 is a stricter test

• Root mean square error - RMSE

30

Best fit line
y= 0.71x + 2.3
r2

corr = 0.86

R2 = 0.74
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Results
Detecting relevant descriptors

31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

R
2

Nrandom

PLS RF RBF GP Fixed GP 2D Search GP Opt GP Nest



© 2016 Optibrium Ltd.

Number of Descriptors Use in Model

• Often quoted rule of thumb… at least 5 compounds in 
training set per descriptor

• This is relevant for simple models where the only complexity 
control is the number of descriptors in the model

• But, GP Nest model includes all descriptors

− Influence of random descriptor on model is negligible

− Posterior probability of complex models is low

• Including additional non-influential descriptors in the model 
can be valuable

− Detect when new compound differs significantly from training set

− Uncertainty in prediction will increase

32



Practical Application to QSAR Modelling
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hERG pIC50

• Diverse data set of 168 compounds

− All manual patch clamp measurements in mammalian cells

• Divided into training (135) and external test (33) sets

• Descriptors including

− Whole molecule properties: logP, Vx, TPSA, MW, flexibility…

− 156 structural descriptors expressed as SMARTS

34

Method R2 RMSE

GP (Nested sampling) 0.72 0.64

RF 0.68 0.68

RBF 0.70 0.66
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hERG pIC50 GP Nested Sampling Results

36

64% within 1 SD, 94% within 2 estimated SD (assuming 0.5 log units uncertainty in expt. data)
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Aqueous Solubility (logS)

• Diverse data set of 3313 compounds

− Log of intrinsic, thermodynamic, aqueous solubility in μM, measured 
between 20 and 30 C

• Divided into training (2650) and external test (663) sets

• Descriptors including

− Whole molecule properties: logP, Vx, TPSA, MW, flexibility…

− 164 structural descriptors expressed as SMARTS 

Obrezanova et al. J. Comp.-Aided Mol. Des. (2008) 22(6-7) pp. 431-440

Method R2 RMSE

GP (Fixed) 0.81 0.80

RF 0.78 0.87

RBF 0.84 0.73

PLS 0.75 0.91
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Aqueous Solubility (logS)

Obrezanova et al. J. Comp.-Aided Mol. Des. (2008) 22(6-7) pp. 431-440
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Conclusions

• Gaussian Processes

− Bayesian non-linear modelling technique

− Generates a probability distribution over possible functions                         models

− Explicitly calculates uncertainties for each prediction

− Similar performance to methods such as random forests, radial basis functions…

− Can also be used for classification

• Limitations

− Most expensive optimisations methods are computationally expensive (e.g. 
nested sampling O(N4))

− Can’t deal with potential sources of variability (e.g. structural features) not 
captured by descriptors

• More information (www.optibrium.com/community)

− Obrezanova et al. JCIM (2007) 47(5) pp. 1847-57

− Obrezanova et al. JCAMD (2008) 22(6-7) pp. 431-440

− Obrezanova et al. JCIM (2010) 50 (6), pp. 1053-1061

40

http://www.optibrium.com/community
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