

Optibrium Consultants' Day Cambridge, Nov 2014

Beyond matched pairs Using matched series for activity prediction

Noel O'Boyle

NextMove Software

Using Matched Molecular Series as a Predictive Tool To Optimize Biological Activity J. Med. Chem. 2014, 57, 2704.

HOW TO CHOOSE WHAT COMPOUND TO MAKE NEXT?

- Based on experience on related projects
 What worked last time?
- By observing an activity trend, inferring a SAR relationship, and extrapolating

- Aka 'chemical intuition'

- Our additional suggestion:
 - Take advantage of the wealth of experience and trends contained in 57K med chem papers
 - 'evidence-based medicinal chemistry'

MATCHED PAIRS & SERIES

MATCHED (MOLECULAR) PAIRS

[Cl, F]

Coined by Kenny and Sadowski in 2005* Easier to predict **differences** in the values of a property than it is to predict the value itself

* Chemoinformatics in drug discovery, Wiley, 271–285.

MATCHED PAIR USAGE

- Successfully used for:
 - Predicting physicochemical property changes
 - Finding bioisosteres
- Not very successful in improving activity
 - Activity changes dependent on binding environment
 - Need to use matched pair data only for a particular binding pocket for a particular protein
- Hajduk, Sauer. J. Med. Chem. 2008, 51, 553
 - Data from 30 protein targets at Abbott
 - Most R group transformations led to potency changes normally distributed around 0

MATCHED PAIRS AND ACTIVITY

pIC₅₀(CC)-pIC₅₀(CCCC)

MATCHED PAIRS AND ACTIVITY

pIC₅₀(CC)-pIC₅₀(CCCC)

MATCHED PAIRS AND ACTIVITY

pIC₅₀(CC)-pIC₅₀(CCCC)

MATCHED SERIES OF LENGTH 2 = MATCHED PAIR

[Cl, F]

"Matching molecular series" introduced by Wawer and Bajorath, J. Med. Chem. **2011**, *54*, 2944

MATCHED SERIES OF LENGTH 3

[Cl, F, NH₂]

ORDERED MATCHED SERIES OF LENGTH 3

- "Matching molecular series" introduced by Wawer and Bajorath *JMC* **2011**, *54*, 2944
 - Subsequent papers use MMS to investigate SAR transfer, bioisosteres, SAR networks, visualisation of series and networks
- Until ours, only a single other paper on MMS

 Mills et al Med Chem Commun 2012, 3, 174

- Fragment molecules at acyclic single bonds
 - Single-cut only, scaffold >= 5, R group <= 12, preserve stereochemistry at break point
- Index each fragment based on the other
 - A matched series will be indexed together

CHEMBL BIOACTIVITY DATABASE

- ChEMBL 19 July 2014
 - 57k papers

- 94% from Bioorg. Med. Chem. Lett., J. Med. Chem., J. Nat. Prod., Bioorg. Med. Chem., Eur. J. Med. Chem., Antimicrob. Agents Chemother., Med. Chem. Res.
- 1.4 million compounds with 12 million activities
- 1.1 million assays against 10k targets

Gaulton et al. Nucleic Acids Res. 2012, 40, D1100

Matched series in ChEMBL19 IC50 binding assays

R Group	CHEMBL768956 (plC ₅₀)	CHEMBL772766 (pIC ₅₀)	
SMe	??	5.92	Potential SAR
NH ₂	??	5.88	「 transfer
OMe	6.68 Kank	order 5.59	Ĩ
Me	6.10 <	→ 4.82	
Cl	5.92 ←	4.75	
F	5.82 <	→ 4.59	0.93 rank order
Et	5.81 <	→ 4.54	correlation
CF ₃	5.70	<4.00	
Н	5.62	4.26	
СООН	4.23	<3.60	String BB

SOXSO MATRIX FROM PICKETT ET AL.

Pickett, Green, Hunt, Pardoe, Hughes. ACS Med. Chem. Lett. 2011, 2, 28.

SOXSO MATRIX FROM PICKETT ET AL.

Pickett, Green, Hunt, Pardoe, Hughes. ACS Med. Chem. Lett. 2011, 2, 28.

SOXSO MATRIX FROM PICKETT ET AL.

Pickett, Green, Hunt, Pardoe, Hughes. ACS Med. Chem. Lett. 2011, 2, 28.

IT'S A SET OF MATCHED SERIES

- Each row/col is a matched series
- Choose a row and a col with the fewest missing values
- Order other rows/cols by average difference with respect to chosen row/col

MULTI-DIMENSIONAL SCALING

- Consider the whole pairwise similarity matrix
- Similar results to previous but should be more robust in general

INTERNAL SAR TRANSFER

Do an all-against-all comparison of the series

EXTERNAL SAR TRANSFER

Do an all-against-ChEMBL comparison

STRENGTHS AND WEAKNESSES

- High confidence in predictions if sufficiently long series with correlated activities (or their rank order)
 - Not always able to find such a series
 - For short series will typically find 10s/100s/1000s
 of matching series with low confidence
- Suited to pairwise comparison within focused dataset
 - Dense SAR matrix from target with well-explored
 SAR

PREFERRED ORDERS IN MATCHED SERIES

PREFERRED ORDERS: HALIDES (N=2)

For an ordered matched series (i.e. A>B>C>...), there are N! ways of arranging the R Groups:

Series	Observations*
F > H	9761
H > F	8685

Would expect 9223 for each assuming the order is random

– We can calculate enrichment

*Dataset is ChEMBL19 IC₅₀ data for binding assays (transformed to pIC_{50} values)

PREFERRED ORDERS: HALIDES (N=2)

For an ordered matched series (i.e. A>B>C>...), there are N! ways of arranging the R Groups:

Series	Enrichment	Observations
F > H	1.06*	9761
H > F	0.94*	8685

Would expect 9223 for each assuming the order is random

- We can calculate enrichment

*Significant at 0.05 level according to binomial test after correcting for multiple testing (Bonferroni with N-1)

PREFERRED ORDERS: HALIDES (N=3)

Series	Enrichment	Observations
Cl > F > H	1.90*	1478
H > F > Cl	1.08	838
F > Cl > H	0.86*	673
F > H > Cl	0.78*	607
Cl > H > F	0.76*	589
H > Cl > F	0.63*	490

PREFERRED ORDERS: HALIDES (N=4)

Series	Enrichment	Observations
Br > Cl > F > H	5.43*	263
Cl > Br > F > H	3.22*	156
H > F > Cl > Br	1.59*	77
Br > Cl > H > F	1.43	69
F > Cl > Br > H	1.40	68
Cl > Br > H > F	0.85	41
H > F > Br > Cl	0.76	37
H > Br > F > Cl	0.50*	24
Cl > H > F > Br	0.48*	23
Cl > F > H > Br	0.45*	22
H > Cl > F > Br	0.43*	21
Br > F > H > Cl	0.41*	20
F > H > Br > Cl	0.41*	20
H > Cl > Br > F	0.41*	20
F > Br > H > Cl	0.35*	17
Br > H > F > Cl	0.23*	11

N=2: Max = 1.06, Min = 0.94 N=3: Max = 1.90, Min = 0.63 N=4: Max = 5.43, Min = 0.232

Longer series exhibit greater preferences

If [H>F>CI] is observed, will Br increase activity further? 149 observations of [H>F>CI] but only 11 where [Br>H>F>CI]

MATSY: PREDICTION USING MATCHED SERIES

FIND R GROUPS THAT INCREASE ACTIVITY

R Group	Observations	Obs that increase activity	% that increase activity
D	3	3	100
E	1	1	100
С	4	1	25
	•••		

V	> 🔻	counts 🔻	ALOgr W
★ ──── Br	38	21	-0.8
*	37	27	+0.9
*-<	33	111	+0.3
*	33	27	+1.0
*он	33	21	-1.6

MATSY DECISION TREE (ONE OF MANY) H>4-CI4-CI>H 3,4-diCl 4-OH 3,4-diCl>4-Cl 4-OH>H H>4-OH>4-CI 4-Cl>3,4-diCl>H H>3,4-diCl 4-CI>4-OH 2-naphthyl 3-pyridyl 4-OMe 4-F 3-Me 4-Br 3,5-diCl $4-NO_2$ 2-OH 4-Br 4-F 2-F **4-**2,4-diCl 3-CI 4-Me 4-NO₂ 2-Cl 4-OMe 4-OMe

MODIFYING THE PREDICTIONS FOR 4-CI > H

A.V.	% > ▼	Counts 🔻	∆LogP ♦
*	63	27	+0.3
~~ ★~⊘	55	20	-0.4
★{	49	63	0.0
★─────	48	46	-0.4
F	48	46	+0.1

Kinases Target-specific

$\Delta LiPE > 0$

Incorporate metrics

DRAG-AND-DROP INTERFACE TO MATSY

							* 2 ?	(× ▼	Counts 🔻	∆LogP ♦
1/2 3 4	5 6 7 8	9 10 1	1 12 Ph 1	Ph 2 Ph	3 Ph 4 Ph	5/6 Custor	n		54	391	+0.6
*-{>-	*	*	*{>-NH:	*-	H ₂ N	*	*-	*0	54	37	+2.0
H0	*{	*	*	*		*{Br		<u>*-{}-</u> /	53	30	+1.1
		*	*-{>-	*	*			F	52	46	+0.1
								* Br	50	521	+0.2
								۲ ★→ ۲ ⊂۱	50	32	+0.1
								*-{_} s	49	63	0.0
								★ -{{}-	48	46	-0.4
9 、	Stronger binding		ChEMBL19	pIC50 V		Weaker binding			48	25	+0.3
			<u>*-</u>		╶╲_♪ ♪		2277	* С он	48	21	-2.2
								Showing 11 to	20 of 1	11 entries Previous	s Next 🕨

IS IT JUST LOGP?

Matched series predictions

Series length	Testset size	Predictions made	In top 5	% found predicted	% found overall
2	48699	39648 (81%)	2427	6	5
3	43450	21858 (50%)	4190	19	10
4	33705	8514 (25%)	3387	40	10
5	24273	1868 (8%)	1016	54	4
6	17379	76 (0%)	33	43	0

- Calculate Spearman correlation of the 1016 series against common descriptors
 - RDKit: ALogP, AMR, TPSA, MolWt, NumHvyAtoms

IN SUMMARY

- Longer matched series (N>2) show an increased preference for particular activity orders
- This can be exploited to predict R groups that will increase activity
 - Predictions are typically based on data from a range of targets and structures
- Completely knowledge-based
 - Can link predictions to particular targets/structures
 - Predictions refined based on new results

Beyond Matched Pairs

Using matched series for activity prediction

noel@nextmovesoftware.com

Acknowledgements

Roger Sayle Jonas Bostrom, AstraZeneca Using Matched Molecular Series as a Predictive Tool To Optimize Biological Activity J. Med. Chem. 2014, 57, 2704.