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62 startups in AI/Chemistry segment

• Aggregate and Synthesize Information
• Understand Mechanisms of Disease
• Repurpose Existing Drugs
• Generate Novel Drug Candidates
• Validate Drug Candidates
• Design Drugs
• Design Preclinical Experiments
• Run Preclinical Experiments
• Design Clinical Trials
• Recruit for Clinical Trials
• Optimize Clinical Trials
• Publish Data
• One of my students – Sam Cooper has started Phenomics AI (Canada)

https://blog.benchsci.com/startups-using-artificial-intelligence-
in-drug-discovery

https://blog.benchsci.com/startups-using-artificial-intelligence-in-drug-discovery


Deep Learning/Artificial Intelligence – citations (WoS, 1995-2018)

Deep Learning Chemistry

Deep Learning QSAR

Deep Learning Drug

Artificial Intelligence Drug

Artificial Intelligence Chemistry

Artificial Intelligence QSAR

1600

60

3000

9000

6000

900



Some companies in AI/Drug discovery



What’s the difference between Statistics, Machine 
Learning and ‘Deep Learning’

• There is significant overlap 
in the methodologies.

• Quite often we mix and 
match to obtain good 
results – there is a place for 
each approach

• I’d look at it as a spectrum 
of tools that can be 
combined to get the best 
results for particular 
problems

Understanding/Prediction

Deep 
Learning

Machine 
Learning

Statistics



• Statistics has a long history in data analysis –
many methods to analyse, predict and model 
data.

• Based mostly on analysis of variance, expected 
distributions and mathematical formalism. 
Mature. 

• Machine Learning grew out of a desire to cope 
with larger unstructured, disjointed  data.

• More of a black box (or even a complete black 
box). Suffers from ‘the curse of dimensionality’ 
– need to reduce the descriptor space

What’s the difference between Statistics, Machine 
Learning and ‘Deep Learning’



• Neural Networks were an initial approach to mimic 
brain architecture.

• However, training ‘deeper’ feedforward neural 
networks tends to yield worse results (both in 
training/test error) than shallow ones (with 1 or 2 
hidden layers).

• ‘Deep’ architectures for learning were recently 
developed – in 2006 some breakthroughs were made

• Humans organize their ideas and concepts 
hierarchically.

• Brain architecture is ‘deep’ , we can copy that
• Humans first learn simpler concepts and then compose 

them to represent more abstract ones.
• Pre-training can significantly improve prediction. 

Deep NNs abstract layers of  information at 
different levels of abstraction

What’s the difference between Statistics, Machine 
Learning and ‘Deep Learning’



Alan Turing (1948) – idea of an ‘e-machine’ – first idea of a neural computer

Written while Turing was working for the National Physical Laboratory in London, 
the paper did not meet with his employers' approval. Sir Charles Darwin, the 
director of the Laboratory, called it a 'schoolboy essay' and wrote to Turing 
complaining about its 'smudgy' appearance. In reality this far-sighted paper was the 
first outline of a ‘neural network’, but sadly Turing never published it. 
http://www.alanturing.net/turing_archive/pages/Reference%20Articles/connectionism/Turing%27s%20neural%20networks.html

In 1943, neurophysiologist Warren 
McCulloch and mathematician Walter Pitts 
wrote a paper on how neurons might work. 
In order to describe how neurons in the 
brain might work, they modelled a simple 
neural network using electrical circuits.

In 1949, Donald Hebb wrote The 
Organization of Behavior, a work which 
pointed out the fact that neural pathways 
are strengthened each time they are used, 
a concept fundamentally essential to the 
ways in which humans learn. If two nerves 
fire at the same time, he argued, the 
connection between them is enhanced.
https://cs.stanford.edu/people/eroberts/co
urses/soco/projects/neural-
networks/History/history1.html



Example of a Neural Network

Predicting TLC (Thin Layer Chromatography)

Start point

Solvent front

Compound moved

to here (Rf=y/x)

X

Y

•Compounds move up the plate depending 

on the solvent, their properties etc.

•We can predict the Rf’s (retention times) 

using details of the molecules and the 

solvent.

•Separate mixtures, identify compounds 

etc.

Silica on glass
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• 22 substituted benzoic acids

Data



• 2 solvent systems

• 6 - mixtures 1               Acetonitrile - Water      30 : 70

2                Acetonitrile - Water     40 - 60

3                Acetonitrile - Water     50 - 50

4                MeOH - Water             40 - 60

5                MeOH - Water             50 - 50

6                MeOH - Water             60 - 40

• 22 compounds x 6 mixtures = 132 experiments

Data



Measurements



No. compound number

Cpd name of compound

Solvent water and acetonitrile/methanol

Rf retention time

Rm (log (1-Rf)/Rf))

S_Area surface area of molecule in A2

clogp calculated partition coefficient octanol/water

volume molecular volume in A3

MPolar polarizability of the molecule cm-25

dipole dipole moment of the molecule (Debye)

dipsol dipole moment of the solvent (%solv1+%sol2)*100 Debye

PolSol polarizability of of the solvent (%pol1+%pol2)/100 Debye

Ovality: how removed from sperical 

water dipole is also given, 2.75Debye 
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• Molecular properties were calculated for each of the molecules and tabulated in a 

spreadsheet (tlcdata.xls) e.g. 



•Simulates the way that neurons are interconnected
•‘learns’ by adjusting the connection weights between nodes taking an input set of parameters and attempting to fit 
the output measurements
•New data can then be entered and using the ‘learned’ model -> predict

This network has a 
2:4:4:1 topology

Like neurons, the connections
are made when a threshold value
is attained.

Use ‘back propagation of errors’ to
adjust the connections

http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Artificial_neural_network

Neural network

http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Artificial_neural_network
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TLC Neural Network and plot of measured vs Predicted results

Quantitative Structure Chromatography Relationships in
Reversed-phase High Performance Liquid Chromatography:
Prediction of Retention Behaviour using Theoretically Derived
Molecular Properties 
Cupid et al. Chromatographia, 1993, 37(5), 241-249

(24 years ago!)



What’s changed? – much ‘deeper’ networks 
can now be optimised

The renaissance in NN started with “ImageNet Classification with Deep Convolutional Networks”, cited over 

6,000 times and is widely regarded as one of the most influential publications in the field.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton created a “large, deep convolutional neural network” 

that was used to win the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge).



Using a Deep NN model to recognise images

- What caught attention – Hintons work on 
image recognition

- deep convolutional neural network to 
classify the 1.2 million high-resolution 
images in the ImageNet LSVRC-2010 
contest into the 1000 different classes

- considerably better than the previous 
state-of-the-art. 

- NN has 60 million parameters and 650,000 
neurons, consists of five convolutional 
layers, some of which are followed by max-
pooling layers, and three fully-connected 
layers with a final 1000-way softmax. 

- GPU implementation of the convolution 
operation. Used “dropout” to avoid 
overfitting.



What’s changed?

• Hinton’s revolutionary work on Deep Belief Networks (DBNs):
• A fast learning algorithm for deep belief nets Neural Computation  2006, 18:1527-1554

• Bengio et al.
• Greedy Layer-Wise Training of Deep Networks. Advances in Neural Information Processing 

Systems 2007, 19 (NIPS 2006), pp. 153-160, MIT Press

• Marc’Aurelio et al.
• Efficient Learning of Sparse Representations with an Energy-Based Model, in J. Platt et al. 

(Eds), Advances in Neural Information Processing Systems (NIPS 2006), 2007, MIT Press

• These include the following key principles:
• Unsupervised learning of representations is used to (pre-)train each layer.
• Unsupervised training of one layer at a time, on top of the previously trained 

ones. The representation learned at each level is the input for the next layer.
• Use supervised training to fine-tune all the layers (in addition to one or more 

additional layers that are dedicated to producing predictions).



• Deep learning allows computational models that are composed of (many) 
multiple processing layers to learn representations of data with multiple levels of 
abstraction.

• These methods have dramatically improved the state-of-the-art in speech 
recognition, visual object recognition, object detection and many other domains 
such as drug discovery and genomics.

• Deep learning discovers intricate structure in large data sets by using the 
backpropagation algorithm to indicate how a machine should change its internal 
parameters that are used to compute the representation in each layer from the 
representation in the previous layer.

The renaissance in Neural Networks



The renaissance in Neural Networks

• Deep convolutional nets have brought about breakthroughs in processing images, 
video, speech and audio, whereas recurrent nets have shone light on sequential 
data such as text and speech.

• Deep-learning methods are representation-learning methods with multiple levels 
of abstraction, obtained by composing simple but non-linear modules that each 
transform the representation at one level (starting with the raw input) into a 
representation at a higher, slightly more abstract level. With the composition of 
enough such transformations, very complex functions can be learned. 

• LeCun et al. N AT U R E | VO L 5 2 1 | 2 8 M AY 2 0 1 5 



What is ‘Deep Learning’ ?
• It belongs to the class of machine learning methods

• Typically includes multiple layers of non-linear processes for feature 
extraction and a connected series of layers for processing, model 
building and information extraction.

• As in machine learning – Deep learning can be supervised (models) or 
unsupervised (classification).

• Different layers (or components) are essentially different layers of 
abstraction (representative, but not typically ‘real’). The layers can be 
simple connections, include transformation of the data or even 
include embedded generative models.

• The architecture of the system in some way follows that of the brain 
and artificial neural networks are the simplest in terms of topology.



What is ‘Deep Learning’ ?

• The transition from Neural Networks to Deep Learning probably arose 
from the idea of generative models (Learning multiple layers of 
representation, Hinton G. E., TRENDS in Cognitive Sciences 2007, 
11(10), 428-434).

• I think the ‘Deep’ description is best categorised by the level of 
abstraction. This a move towards machine intelligence. Humans 
abstract knowledge, now machines do the same.

• A major advance is that feature selection (a major bug-bear in 
Machine Learning methods) is often no longer required, or at least 
can be handled.



Generative models

To learn multiple layers of feature detectors when labelled data are scarce or 
nonexistent, some objective other than classification is required

In a neural network that contains both bottom-up ‘recognition’ connections and 
top-down ‘generative’ connections it is possible to recognize data using a 
bottom-up pass and to generate data using a top-down pass.

If the neurons are stochastic, repeated top-down passes will generate a whole 
distribution of data-vectors (fantasies). This suggests a sensible objective for 
learning: adjust the weights on the top-down connections to maximize the 
probability that the network would generate the training data. 



So, the objective is to find a hidden representation that allows generation of the 
training data. We’re not fitting a model to an output, we’re fitting an input and 
generating the input. The hidden layers tell us what is important to generate the 
model. It does feature selection.

The example developed by Hinton, using as the generative layers “Restricted 
Boltzmann Machines (RBMs)” – which is based on work by Somlenski (1986) on 
“Foundations of Harmony Theory” – a mathematical theory of information 
processing. The combination of approximate inference for learning the 
generative weights, and “fantasies” (fantasies are generated from the model by 
using the generative weights in a topdown pass) for learning the recognition 
weights is known as the ‘wake-sleep’ algorithm learn deep directed networks 
one layer at a time by stacking RBMs.
http://www.cs.toronto.edu/~hinton/

Generative models

http://www.cs.toronto.edu/~hinton/


Lots of terminology:

Convolutional Networks
Recursive Nets
Autoencoders
Representational Learning
Structured Probabilistic Models
Deep Generative Models
Bi-Directional Recurrent Neural Networks
Recursive Boltzmann Machine
Deep Belief Networks
Generative Adversarial Networks
Long-Short Memory Units
Multi-Layer Perceptron
Rectified Linear Units
Recurrent Neural Networks
Recursive Neural Networks
Representation Learning
T-SNE
Transfer Learning
…

An example from our work.

t-distributed stochastic neighbour embedding (t-SNE) is a 
machine learning algorithm for dimensionality reduction 
developed by Geoffrey Hinton and Laurens van der Maaten. 
We used a version called parametric t-SNE.



Several reviews in drug discovery and applications of Deep Learning

From machine learning to deep learning: progress in 
machine intelligence for rational drug discovery
Zhang et al. Drug Discovery Today  Volume 22, Number 11  
November 2017
‘The most commonly used networks are convolutional 
neural networks (CNN), stacked autoencoders, deep belief 
networks (DBN), and restricted Boltzmann machines’

Is Multitask Deep Learning Practical for Pharma?
Ramsundar et al. Chem. Inf. Model., 2017, 57 (8), pp 
2068–2076
’ Our analysis and open-source implementation in 
DeepChem provide an argument that multitask deep 
networks are ready for widespread use in 
commercial drug discovery.’

Deep Learning in Drug Discovery
Gawehn, Hiss and Schneider. Mol. Inf. 2016, 35, 3 – 14
‘With the development of
new deep learning concepts such as RBMs and CNNs, the
molecular modeler’s tool box has been equipped with potentially
game-changing methods.’

Deep learning. Le Cun (Hinton) et al.  
Nature, 2015, 521, 436-444. 



Deep Learning for Drug-Induced Liver Injury
Xu et al. J. Chem. Inf. Model. 2015, 55, 2085−2093

Protein−Ligand Scoring with Convolutional Neural Networks. 
Ragoza et al. J. Chem. Inf. Model. 2017, 57, 942−957

Deep Neural Nets as a Method for Quantitative 
Structure−Activity
Relationships.
Junshui et al. J. Chem. Inf. Model. 2015, 55, 263−274

Low Data Drug Discovery with One-Shot Learning.
Alte-Tran et al. ACS Cent. Sci., 2017, 3 (4), pp 283–293
‘we demonstrate how one-shot learning can be used to significantly 
lower the amounts of data required to make meaningful predictions 
in drug discovery applications. We introduce a new architecture, the 
iterative refinement long short-term memory, that, when combined 
with graph convolutional neural networks, significantly improves 
learning of meaningful distance metrics’

Several reviews in drug discovery and applications of Deep Learning



Deep Learning and Big Data

To a large extent, they have gone hand in hand. Along with massive computing power (GPUs) you 
typically need:

• A very large amount of data to refine what is essentially a very large model with huge numbers of 
variables.

• Although this is changing see reference ACS Cent. Sci., 2017, 3 (4), pp 283–293 on one-shot
learning.

• Reinforcement learning, resampling, stepwise methods can be more efficient in smaller
datasets. 

• The other problem can be that datasets are too big. We recently had a problem of 
clinical imaging data that was too big to compute.

• Tests of robustness that are up to finding the ‘ground truth’
• L1 and L2 regularisation, Bayesian regularization with penalties, early termination, dropout, 

resampling

• Ways of finding the correct hyperparameters - it’s not just plug and play. Serious work is required 
to optimise.



Data Driven analysis of tumours using DESI-MS

Paolo Inglese, Robert Glen, Zoltan Takats, Jeremy Nicholson
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Data Driven Identification and analysis of tumour sub-types

Inglese, Paolo, et al. "Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of 

cancer." Chemical Science (2017), 5, 3500-3511
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(Unsupervised 
Deep Learning)



Tumour spectra

100 300 700 1000

m/z

Unsupervised dimensionality reduction

(parametric t-SNE)*

OPTICS: density-based clustering**

*Maaten, L. (2009). Learning a parametric embedding by preserving local structure. International Conference on Artificial 

Intelligence and Statistics.

**Ankerst, Mihael, et al. "OPTICS: ordering points to identify the clustering structure." ACM Sigmod record. Vol. 28. No. 2. ACM, 

1999.

The spectra classified as belonging to the tumour class can be analysed through 

unsupervised techniques.



Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends® in Machine Learning 2.1 (2009): 1-127.

*http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

Manifold learning determines the global 

low-dimensional embedding of the data 

space by looking at the local 

characteristics of the high-dimensional 

space.

Autoencoders can be seen as simple 

parametric manifold learning models.

Autoencoders are simple feed-forward 

ANN (Artificial Neural Network) trained 

to reconstruct the input.

The hidden layer can be used to 

”compress” the data into a lower-

dimensional space (latent).

They are deterministic (input X 

always returns the same output f(X)).

Using autoencoders to learn the ‘shape’ of the data – compress it into a lower 
dimensionality 



parametric t-SNE (391-250-250-1000-2)

Perplexity = 30

Train: non-lin. GD (Polak-Ribiere) 500 epochs

PCA

(tested: autoscaling, pareto, vast, range, level scaling)

Simple linear techniques (widely used) are not capable of capturing the complexity of the data 

structure.

A comparison with PCA shows the limits of linear methods. Parametric t-SNE 

is capable of finding a more complex mapping of the similarities between 

spectra.



Projection of the cluster labels on the tissue 

Clustering results are compatible with a sequence of

contiguous tissue sections.

The low-dimensional data (from parametric t-SNE) can be clustered using a 

density-based clustering algorithm: OPTICS (similar to DBSCAN). The optimal 

number of clusters can be identified through the reachability plot.

Some high dense regions were not separated enough to 

be considered individual clusters.



Co-expression network:

adjacency matrix = pairwise ion correlations

OPTICS clusters

Sum of ion intensities in the 3 largest sub-networks

Look for concordance between the sub-networks and

the OPTICS clusters.

Comparing the results of OPTICS with those of a co-expression network: from 

spectra clustering to ion clustering. Identifies the key differentiating ions in the 

clusters.



PIs and PEs

PGs

Ceramides

Matching between the 3 largest sub-networks and the 3 OPTICS clusters can be used to identify the 

characteristic ions of the 3 tissue sub-types. Here the intensities of the 3 ions most connected in each sub-

networks are compared in the 3 clusters (c1, c2, c3), the healthy (h) and the background (b) classes.

PI – phosphoinositols,   PE – phosphotidylethanolamines,   PG – phosphtidylglycerols,   Ceramides

We have now a deeper insight of the molecular distributions inside the tumour.
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Clusters and Chemistry

• Cluster 1. Was associated with ions expressed more extensively in the entire tumour, was 
characterised by an abundance of phophatidylethanolamines (PE), and these high levels 
have been associated with rapidly proliferating human colorectal cancer in previous 
work. Additionally, the abundance of phospatidylinositols (PI) was found only in cluster 
one, which are also hallmarks of viable cancer tissue.

• Cluster 2. Phosphatidylglycerols (PG) were found in cluster two, indicating the presence 
of mucus in mucinous subtype colorectal malignant tissue as PGs generally serve as 
surfactants in the human body. The presence of very long acyl chains (n>18) excludes a 
bacterial origin and indicates peroxisomal dysfunction in this segment. An abundance of 
phosphatidylserine (PS) was found only in cluster two, which has previously been 
associated with apoptosis of colon cancer cells.

• Cluster 3. Characterised by an abundance of ceramides, which indicates the presence of 
a process of necrosis/apoptosis, in agreement with the gross histological appearance in 
this sub-region. The increased concentration of ceramides is clearly associated with the 
degradation of sphingolipids in the necrotic cell debris.



Example of comparison between clusters and 

histological characteristics of the tissue. Micro-

environments are identifiable from the analysis 

and aid the histologist

Reconstruction of the 3D volume of the tumour

Rendering of the smoothed tumour 

clusters and identify cancer subtypes 

based on metabolism.



THEANO – python library and tutorials (from MILA lab at University of Montreal)  http://deeplearning.net/tutorial/

List of Deep Learning software tools
http://deeplearning.net/software_links/

Where to find out about Deep Learning

Some of the more popular packages

Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal)
Torch – provides a Matlab-like environment for machine learning algorithms in lua
Pylearn2 – Pylearn2 is a library designed to make machine learning research easy.
Blocks – A Theano framework for training neural networks
Tensorflow – TensorFlow is an open source software library for numerical computation using data flow graphs.
MXNet – MXNet is a deep learning framework designed for both efficiency and flexibility.
Caffe -Caffe is a deep learning framework made with expression, speed, and modularity in 
Lasagne – Lasagne is a lightweight library to build and train neural networks in Theano.
Keras– A theano based deep learning library.
………. Lots more

http://deeplearning.net/tutorial/
http://deeplearning.net/software_links/
http://deeplearning.net/software/theano
http://deeplearning.net/software/theano
http://www.torch.ch/
https://github.com/lisa-lab/pylearn2
https://github.com/mila-udem/blocks
http://www.tensorflow.org/get_started/index.html
https://github.com/dmlc/mxnet
http://caffe.berkeleyvision.org/
https://github.com/Lasagne/Lasagne
http://keras.io/

