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• Semi-empirical approach
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The Negative Logarithmic Acid Dissociation Constant:
pKa

• Quantitative measure of the strength of an acid in solution

• Ka is the equilibrium constant for an acid dissociation 
reaction

𝐻𝐴 ↔ 𝐻+ + 𝐴−

𝐾𝑎 =
𝐻+ [𝐴−]

[𝐻𝐴]

• pKa is the negative logarithmic constant for the acid 
dissociation reaction – the smaller the pKa, the stronger the 
acid

𝑝𝐾𝑎 = −𝑙𝑜𝑔𝐾𝑎
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The Value of a Good pKa Prediction

Improved • in silico tools are useful to medicinal chemists 
in the research stage

Manage time, cost, resources−

Ensure that good quality compounds make it to clinical trial−

Knowledge of • pKa is valuable to chemists’ decision 
making

Influence on physicochemical and ADME properties−

o Absorption, Distribution, Metabolism, Excretion
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The Value of a Good pKa Prediction

Ketoconazole – pKa 6.43, 3.64

pH LogD [1] Aqueous solubility (mg/mL) 
[2]

% Ionised

3 0.35 0.43 Highest

5 2.37 0.1

7.4 3.46 0.006 Lowest

[1] Mackenzie, H. (2013). The Central Role of pKa in Drug Discovery.
[2] Ghazal, H., Dyas, A., Ford, J. and Hutcheon, G. (2014). The impact of food components on the intrinsic dissolution rate of ketoconazole. Drug 
Development and Industrial Pharmacy, 41(10), pp.1647-1654.
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Project Context
Current and past research

• Direct pKa calculation

− Ab initio and DFT studies with implicit solvation model [1]

• QSAR: Correlating pKa with ab initio and DFT calculated descriptors

− Partial atomic charges [2] 

− Bond lengths [3]

• Correlation with semi-empirical FMO descriptors calculated with 
computed eigenvectors and eigenvalues [4]

[1] da Silva, G., Kennedy, E. and Dlugogorski, B. (2006). Ab Initio Procedure for Aqueous-Phase pKa Calculation: The Acidity of Nitrous 
Acid. The Journal of Physical Chemistry A, 110(39), pp.11371-11376.

[2] Svobodová Varěková et al. (2011). Predicting pKa Values of Substituted Phenols from Atomic Charges:  Comparison of Different Quantum 
Mechanical Methods and Charge Distribution Schemes. Journal of Chemical Information and Modeling, 51(8), pp.1795-1806.

[3] Harding, A. and Popelier, P. (2011). pKa Prediction from an ab initio bond length. Physical Chemistry Chemical Physics, 13(23), p.11264.

[4] Tehan et al. (2002). Estimation of pKa Using Semiempirical Molecular Orbital Methods. Part 1: Application to Phenols and Carboxylic 
Acids. Quantitative Structure-Activity Relationships, 21(5), pp.457-472.
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Drawbacks

• DFT and ab initio are computationally expensive

• FMO descriptors alone were not enough to produce a good 
correlation

• Separate models for separate compound classes – not 
universal across any ionisable centre. 
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Goals for Improvements to Current Methods

• Multi-faceted QSAR model combining partial atomic charge 
and bond length descriptors with FMO and energy 
descriptors

− All calculated with AM1 level of theory

− Much faster than calculating descriptors using ab initio and DFT 
methods

• Unified model: One model accurately predicting pKa for 
multiple compound classes

− Previous research involved one model for each compound class 
resulting in the production of a number of different models



DFT Approach
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DFT Approach
Computational details

First looked at accurate DFT direct calculation method•

Using a thermodynamic cycle and Gibbs energies−

• B3LYP/6-31++G** level of theory and COSMO solvent model

Continuum solvation model−

Calculated using NWCHEM software•

Image credit: Casasnovas, R., Ortega-Castro, J., Frau, J., Donoso, J. and Muñoz, F. (2014). Theoretical pKa calculations with continuum 

model solvents, alternative protocols to thermodynamic cycles. Int. J. Quantum Chem., 114(20), pp.1350-1363.

𝑝𝐾𝑎 = Τ∆𝐺 𝑎𝑞 2.303𝑅𝑇
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DFT Results
140 compounds

R2 RMSE

0.85 3.17
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DFT Results
Thiols

R2 RMSE

0.79 0.82

Best fit line
r2

corr = 0.96
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DFT Corrected Results
Thiols

R2 RMSE

0.96 0.35
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DFT Corrected Results
Corrections to all compound classes

R2 RMSE

0.95 1.82
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DFT Drawbacks

• Although an accurate method, computational time is slow

− Calculations took days, or weeks for large drug-like compounds

• End-user will want accurate and fast results

− Smaller basis sets still computationally expensive

• Ultimately, a compromise is needed between accuracy and 
speed 

− Can semi-empirical methods produce the same results?



Semi-empirical Approach
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Direct Calculation of pKa with AM1

• MOPAC calculations of energy terms

− AM1 semi-empirical method with COSMO solvation model

− Method based on the Neglect of Differential Diatomic 
Overlap (NDDO) integral approximation

• Direct calculation of pKa failed

• No correlation between AM1 and DFT energies

• How to use AM1 to get a meaningful prediction?
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QSAR
An effective way to use AM1 

pK• a of a compound depends on its structure

Thus, it may be possible to find a Quantitative Structure Activity −
Relationship (QSAR) 

Is AM− 1 able to calculate descriptors to build a QSAR model?

Including the − ab initio and DFT calculated descriptors which showed 
a correlation in previous research

Calculation of various descriptors for ~• 600 compounds 
shows positive results
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Computational Details

• AM1 in MOPAC

• All calculations carried out in gas phase

• Descriptors calculated:

− Bond lengths 

− Partial charges

− HOMO/LUMO energies

− Heats of formation

− FMO descriptors: electrophilic superdelocalisability (SE) and 
nucleophilic frontier electron density (FN) [1]

[1] Fukui, K., Yonezawa, T. and Nagata, C. (1954). Theory of Substitution in Conjugated Molecules. Bulletin of the Chemical Society of Japan, 
27(7), pp.423-427.



© 2017 Optibrium Ltd.

Results
One model per compound class

• Auto-Modeller in StarDrop™ was used to build QSARs for individual compound 
classes

• Tested various modelling methods such as Random Forests, PLS and Gaussian 
Processes

• The most successful, Radial Basis Function (RBF), modelling method used for all 
compound classes

Compound class R2 (test set) RMSE

Carboxylic acids 0.89 0.37

Heterocycles 0.89 0.64

Amines 0.96 0.77

Phenols 0.96 0.47

Thiols 0.72 0.97

Oxygen acids 0.88 0.84 Phenols
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Unifying the Model

• Attempted to build a unified model 

− One model which will be used for all compound classes as opposed 
to separate models for each compound class

• Encompasses all descriptors used in each model and, 
additionally, a binary indicator variable to classify the site of 
deprotonation

• RBF model produced in Auto-Modeller

− Keeping consistency in the modelling method from the individual 
models to the unified model
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Results
External test set

R2 (test set n=180) RMSE

0.96 0.69
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Performance of Model on Different Classes

• Tested unified model on separated compound classes

− To evaluate if different classes are predicted better than others

Compound class R2 RMSE

Carboxylic acids 0.82 0.47

Heterocycles 0.92 0.58

Amines 0.94 0.99

Phenols 0.92 0.66

Thiols 0.70 0.74

Oxygen acids 0.94 0.57

Phenols
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Applying the Model to a Larger Dataset 

Data provided by Lhasa Limited, https://www.lhasalimited.org/•

New data outside of domain of applicability•

Old

New

Small

Large

Old or new data Size of error
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Retraining the Model on a Larger Dataset
Independent test set results

R2 (test set n=1534) RMSE

0.89 1.16



Summary and Further Steps



© 2017 Optibrium Ltd.

Summary and Further Steps

• Semi-empirical quantum calculations used in QSAR 
produced an accurate, computationally inexpensive pKa

model

• Attempts to create a unified model proved successful with 
the ability to make excellent predictions 

• Future considerations:

− Inclusion of consecutive deprotonation of multiple ionisation states

− More accurate semi-empirical method (e.g. PM6)

− Solvation effects taken into account



Thank You for Listening



© 2017 Optibrium Ltd.

Acknowledgements

• Optibrium

− Continued guidance, advice and support from Peter Hunt, Matt 
Segall and Rasmus Leth

• Data provided by Lhasa Limited 

• Funding from the Royal Society of Chemistry

• University of Leeds 

− Organisation of the placement program and support from Profs. 
Dmitry Shalashilin and Paul Seakins


