

Practical Applications of Deep Learning to Imputation of Drug Discovery Data

Benedict Irwin* ben@optibrium.com

Julian Levell⁺, Thomas Whitehead[‡], Matthew Segall^{*}, Gareth Conduit[‡] *Optibrium Limited, Cambridge UK. ⁺Constellation Pharmaceuticals, Cambridge MA. [‡]Intellegens Limited, Cambridge UK.

Overview

- **Problems** with pharma data:
 - Define solutions to these problems
- Alchemite: A novel deep learning algorithm for *imputation*
 - Imputation = Filling in the blanks
- Walkthrough deep learning imputation on a real project:
 - Early screen data
 - Validation
 - Late stage models
 - Comparison with standard QSAR methods
- Larger applications and **future prospects**

Imputation goes beyond QSAR!

e.g. Random forest

Alchemite

Problems with Pharma Data

Problems with Pharma Data

For a machine learning method to be **practically** useful in QSAR it should handle:

Missing Values	Noisy Data
Multiple Endpoints	Data Changing with Time

- Problem:
 - Most algorithms cannot handle missing inputs
 - $y = f(x_1, ?, x_3, x_4, ?)$
 - Simple methods to impute give poor quality results
 e.g. imputation via mean
 - $y \neq f(x_1, \overline{x_2}, x_3, x_4, \overline{x_5})$
- Solution:
 - Algorithm should make the most of data present
 - "Fill in" the missing values with sensible predictions

	SMILES	Potency vs Parasite (uMc	Ion Regulation Activity	SSI%	EC50Chembl(uM)	ertl-39	aminoethanol1
1	the second	10	?	?	?	0	1
2	A A	0.6095	?	?	?	0	0
3	ALE	1.121	?	?	?	0	0
4	A B	0.7308	?	?	?	0	0
5	A. A.	10	?	?	?	0	0
6	04.0.0'	?	?	?	?	0	0
7	N N O	?	?	?	?	0	1
8		0.296	0	?	?	0	1
9		0.142	0	?	0.4809	0	0

Noisy Data and Confidence in Predictions

- Problem:
 - Pharma data is inherently noisy
 - Input data may not be "true"
 - Model outputs a number with no context
- Solution:
 - Input noise accounted for
 - Predictions should come with confidence values!
 - Highly confident predictions are more valuable than weak ones
 - Provide a big error bar if model doesn't know the answer

Multiple Endpoints - One Model

- Problem:
 - Many columns in project data: can't train a model for each one...
 - Activity IC50, EC50: protein, supersome, cell
 - Multiple targets: related, unrelated
 - (ADME) Absorption, distribution, metabolism, and excretion
 - Plasma protein binding, intrinsic clearance, CYP inhibition, permeability, solubility
- Solution:

Changing with Time

- Problem:
 - Data are evolving as project continues
 - Chemical space changes
 - Activity changes i.e. increasingly active
 - Data sparsity changes (more ADME, less HTS)
 - Uncertainty changes
 (new assay concentration, finer resolution)
- Solution:
 - Model which extrapolates well
 - Retraining the model as appropriate

Alchemite – A Method for Deep Multiple Imputation

Optibrium Collaboration with Intellegens

Alchemite – A Method for Deep Multiple Imputation

- Originally used to design new materials at the University of Cambridge, UK
 - Design alloys, identify errors in databases
 - Optimising algorithm and applying to drug discovery data
- Take solution of deep neural network $D_{NN}(\vec{x})$ under fixed point iteration
 - $D_{NN}(\vec{x}; W, \beta, \theta) = \vec{x}$, for \vec{x} in training set.

Output Predictions and Uncertainty

- Outputs a probability distribution by multiple imputation (1000's of samples).
 - Network is very quick to train/evaluate: train thousands of networks

Practical Application of Deep Learning to Project Data

- Two Projects
 - A: Completed project
 - B: Ongoing project that had recently commenced

Project	No. of Cmpds.*	Biochemical Activity Endpoints		Cell-based Activity Endpoints		ADME Endpoints	
		Number	Sparsity (% Filled)	Number	Sparsity (% Filled)	Number	Sparsity (% Filled)
А	1241	3	45	2	15	8	16
В	338	5	55	0	N/A	8	3

• Small number of additional data points for Project B compounds were measured for imputed data points after completion of the models

Overview

- Objectives
 - Compare accuracy of Alchemite model to conventional QSAR models
 - Compare models built on all data simultaneously with those build on individual projects and subsets of data
 - Evaluate Alchemite's ability to estimate confidence in individual predictions and target the most accurate results
- Three sets of models generated:
 - Two Alchemite models of the individual project data sets
 - A single Alchemite model covering the combined activity and ADME data from both projects
 - Conventional QSAR models of the individual endpoints

o Random forest, Gaussian processes, radial basis functions and partial least squares

Comparison of Alchemite and QSAR Single Alchemite model of combined data set

Average R^2 : QSAR = 0.44, Alchemite = 0.65

Single Model vs Individual Project Models

* Individual project model for ADME properties built and tested on Project A only. Full data set model tested against both projects.

Example Validation Project B - Bioactivity 2

• We then received more data on the Project B compounds

Identity line,y=x Test Set Predicted pIC₅₀ Prospective Test Set New active compounds correctly identified as active Bioactivity 2 **Outlier correctly identified** as the prediction with the Ш highest uncertainty. Project 7 8 3 PJB Bioactivity 2 Observed pIC₅₀

Observed values are outside the range of the initial training set; yet, they are correctly predicted to be inactive

Identify and Discard the Least-Confident Predictions Project B – Bioactivity 2

Increasing confidence in prediction

Part 1 - Conclusions

- The single Alchemite model of data for both projects, including biochemical and cell-based activities, and ADME properties significantly outperforms QSAR models
- The performance on independent and prospective test sets is very good and consistent.
- The single Alchemite model performs equivalently to models of individual projects and subsets of the data
 - Can combine data from multiple chemistries and types of endpoints in a single model
- Alchemite can target focus on the most confident and accurate results to use as the basis for decisions
- Next steps... Application to new compounds and data as project progresses

Part 2 - Temporal Prospective Validation

- Received an additional 874 compounds for project B
 - Sparse results from real experiments
 - Many additional ADMET datapoints
- Three blocks of temporally coordinated data, B1,2,3:
 - Model 1 : Trained on all of the original data
 - Model 2 : Original + B1
 - Model 3 : Original + B1 + B2
 - Test each model on B3

	Original Train	
I	Original Test	
	Block 1	
	Block 2	
	BIOCK 3	

ncreasing Time

Project B - Temporal Prospective Validation

ADME Human Plasma Protein Binding: Predicting Block 3

- Initial models can tell high from low
- Quality of predictions and error models improves with more data

Example of Activity Improving

- Activity
- Good model gets better
- Last model confident identifying active compounds better than μM

Predicted B Bio. 2 plC50

Comparison of Alchemite and QSAR Single Alchemite model of Model 3 data set

Part 2 - Conclusions

- Alchemite: Practical application of deep learning
 - Handles missing data and makes the most of extreme levels of sparsity
 - Provides robust uncertainty estimates on predictions
 - One model trained for all project data simultaneously, exploits assay-assay correlations
 - Retrainable to handle all stages of project which changes in time
- Alchemite can focus on the most confident and accurate results
- Alchemite models improve as data is added in a realistic chronological project series

Application to Larger Datasets

Global Pharma Collaboration

- **710,305** compounds
- 2,171 assays totaling **3,568** endpoints
- Covering a full range of drug discovery assays, including compound activities and ADME properties

Thank you for Listening!

- Thanks to:
 - Tom Whitehead, Gareth Conduit
 - Julian Levell
 - Matthew Segall, Peter Hunt
- If you want to find out more:
 - ben@optibrium.com
 - info@optibrium.com

