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Overview

• Linking in silico target interaction models to Adverse Outcome 
Pathways (AOPs)

− HeCaToS project

− Empirical and physiological models

• Example – Modelling BSEP and MRP4 inhibition to predict 
cholestasis

− Köck et al. Drug Metab. Dispos. (2014) 42 pp. 665-674

− Welch et al. Drug Metab. Dispos. (2015) 43 pp. 725-734

• Future work

• Conclusions
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HeCaToS Project
Hepatic and Cardiac Toxicity Systems

• European Framework 7 project led by                         
University of Maastricht

− www.hecatos.eu

− Partners include: Roche, InSphero, Imperial College London, ETH-
Zurich, EMBL, Genedata, Luxcel, HULAFE, MicroDiscovery…

• Vertical integration of toxicity prediction systems

− In silico, in vitro and clinical data

• Goals

− HeCaToS aims to develop integrative in silico tools for predicting human 
liver and heart toxicity. The objective is to develop an integrated modeling
framework, by combining advances in computational chemistry and 
systems toxicology, for modelling toxic perturbations in liver and heart 
across multiple scales
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Linking In Silico Target Activity Predictions to AOPs

4

PB/PK Models

Cell/Organ/Pathway Models

ADME/Physchem properties:
e.g. permeability, solubility, logP, 
metabolism, transport…

Drug M1…
Drug M1…

Target 
IC50s/Kis

Toxic response

Drug M1… Concentration-time profile in 
tissues

Computational Chemistry Models



© 2015 Optibrium Ltd.

Linking In Silico Target Activity Predictions to AOPs

• Empirical

− Statistical link between target activity and toxicity (often motivated 
by mechanistic understanding)

− Identify correlation between IC50, EC50, Ki, etc. and chance of toxicity 
(hazard)

− Potentially include exposure information to estimate risk

• Physiological Models

− Use data on target activities (and exposure)                                          
as input to biophysical model of cell/organ

− Directly simulate changes in organ function

− Estimate risk of toxicity
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Link Between BSEP and MRP4 Inhibition 
and Cholestasis
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Background

• Inhibition of hepatocyte efflux proteins linked to Cholestasis

− Bile Salt Export Pump (BSEP)

− Multidrug Resistance Protein 4 (MRP4)

• Mutations of BSEP gene ABCB11 linked with familial 
intrahepatic cholestasis type 2

• MRP4 may serve as ‘back-up’ system for bile acid efflux

• Statistically significant relationship between MRP4 inhibition 
and probability that a drug was cholestatic, when acompound
is not a BSEP inhibitor

• Significant overlap of inhibitors of BSEP and MRP4
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Köck et al. Drug Metab. Dispos. (2014) 42 pp. 665-674

Welch et al. Drug Metab. Dispos. (2015) 43 pp. 725-734
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Modelling BSEP and MRP4 Inhibition

• Quantitative Structure-Activity Relationship (QSAR) models built 
to classify compounds as inhibitors (True) or non-inhibitors (False)

− BSEP: IC50 ≤135 µM

− MRP4: ≥20% inhibition @ 100 µM 

• Data sets*

• 330 descriptors used as input, including whole molecule 
properties (logP, Vx, TPSA…) and 2D SMARTS

• Modelling methods
− Random forests, Gaussian processes

− Built with StarDrop Auto-Modeller™

8*Welch et al. Drug Metab. Dispos. (2015) 43 pp. 725-734

MRP4 (T/F) BSEP (T/F)

Training set 57 (34/23) 171 (43/128)

Test set 29 (17/12) 85 (22/63)
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BSEP Model
Gaussian process classifier – Independent test set

• Accuracy 89% (83%*)

− True sensitivity 73%

− True specificity 84%

− False sensitivity 95%

− False specificity 91%

• κ statistic = 0.71

• Matthews correlation 
coefficient = 0.71 (0.58*)
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AUC=0.94 (0.87*)

*Welch et al. Drug Metab. Dispos. (2015) 43 pp. 725-734
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MRP4 Model
Random forest classifier – Independent test set

• Accuracy 83% (66%*)

− True sensitivity 94%

− True specificity 80%

− False sensitivity 67%

− False specificity 89%

• κ statistic = 0.63

• Matthews correlation 
coefficient = 0.65 (0.42*)
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AUC=0.86 (0.84*)

*Welch et al. Drug Metab. Dispos. (2015) 43 pp. 725-734
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BSEP and MRP4 Inhibition vs Cholestasis
Based on Experimental Data (88 compounds)*
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κ statistic = 0.36κ statistic = 0.10

*Köck et al. Drug Metab. Dispos. (2014) 42 pp. 665-674

Key
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BSEP and MRP4 Inhibition vs Cholestasis
Based on Experimental Data (88 compounds)*

12*Köck et al. Drug Metab. Dispos. (2014) 42 pp. 665-674

Key

MRP4 % Inhibition MRP4 % Inhibition

20% 20%
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BSEP and MRP4 Inhibition vs Cholestasis
Based on Experimental Data (88 compounds)*

13*Köck et al. Drug Metab. Dispos. (2014) 42 pp. 665-674

Key
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BSEP and MRP4 Inhibition vs Cholestasis
Based on Experimental Data (88 compounds)*

14*Köck et al. Drug Metab. Dispos. (2014) 42 pp. 665-674

κ statistic = 0.17κ statistic = 0.44

BSEP Inhibitor = FALSE BSEP Inhibitor = TRUE

Conclusion: MRP4 Inhibition may help to reduce false negatives from measurements 
of BSEP inhibition. But neither are sufficiently predictive of Cholestasis.
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BSEP and MRP4 Inhibition vs Cholestasis
Based on Predictions (88 compounds)*

15*Köck et al. Drug Metab. Dispos. (2014) 42 pp. 665-674

κ statistic = 0.21κ statistic = 0.39

BSEP Inhibitor = FALSE BSEP Inhibitor = TRUE

Conclusion: Relationship between predictive models and cholestasis is similar to 
experimental inhibition data, but experimental data does not support prediction.



Where Next?
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Integration of QSAR with Biophysical Models
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ChEMBL QSAR Model Biophysical Model RiskFunction

Figure and video courtesy of Dr Steven Niederer, King's College London
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Integration of QSAR with Biophysical Models
Requirements

• Data of sufficient quality and diversity

• Accurate numerical models of target activities

• Well validated biophysical model

• Good estimate of exposure at cell/organ 
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ChEMBL QSAR Model Biophysical Model RiskFunction

Figure and video courtesy of Dr Steven Niederer, King's College London
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Integration of QSAR with Biophysical Models
Challenges

• Availability of data for toxicity-related targets

− Many tox-related targets are not ‘standard’ screening targets in 
pharma

• Domains of applicability of QSAR models

− Given limitations of data above

• Are biophysical models stable within typical range of QSAR 
model uncertainties (~0.8-1.0 log units)?

• Can we estimate concentrations at target cell/organ

− Free versus bound concentrations

− What about intracellular concentrations?
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Conclusions

• QSAR models of sufficient quality can be                                
generated for targets related to AOPs

− Care must be taken with domain of applicability

• Need to consider if association between target(s) and 
adverse outcome is strong enough to be predictive

• Linking target interactions to AOPs via biophysical models 
may provide a good approach

− Significant challenges remain to be addressed…
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