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Abstract 
Drug discovery is a process of multi-parameter optimisation, with the objective of finding compounds that 
achieve multiple, project-specific property criteria. These criteria are often based on the subjective opinion of 
the project team,  but analysis of historical data can help to find the most appropriate profile. Computational 
‘rule induction’ approaches enable an objective analysis of complex data to objectively identify interpretable, 
multi-parameter rules that distinguish compounds with the greatest likelihood of success for a project’s 
objective. The importance of each property criterion highlights the most critical data that enable effective 
compound prioritisation decisions. We illustrate this with two applications: determining rules for simple, ‘drug-
like’ properties; and exploring experimental target inhibition data to find rules to reduce the risk toxicity. 
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Introduction 
A recent trend in drug discovery has been to view the process of drug design as a multi-parameter 
optimisation problem [1] [2], in which, from the beginning, a project team attempts to identify drug candidates 
that achieve an optimal balance of the biological and physicochemical properties required for a chosen 
therapeutic objective. By simultaneously optimising multiple properties with respect to a “profile” of several 
criteria, the goal is to increase the probability of quickly identifying a high quality compound over simply 
considering a single design parameter at a time. For example, in a project where the goal is to identify an orally 
dosed drug, one might define a target product profile for a lead compound similar to that shown in Table 1.  

Table 1 Example property criteria for a lead compound intended for oral dosing [2]. 

Property Criterion 

Pharmacology 

Potency against target (Ki) <100 nM 

Selectivity against related off-targets >100  

Physicochemical 

LogP <4 

Solubility >100 M 

MW <450 Da 

ADME 

Caco-2* permeability (Papp) >110
-6

 cm/s 

Intrinsic Clearance in Human Liver Microsomes (Clint) <25 L/min/mg protein 

Absence of P-glycoprotein transport (Caco2 BA:AB) <3 

Safety 

Avoid Cytochrome P450-mediated drug-drug interactions (Ki 
for major drug metabolising isoforms) 

>1 M 

Avoid interaction with hERG potassium ion channel (IC50) >10 M 

Cytotoxicity in HepG2† cells (LD50) >1 mM 
*Human epithelial colorectal adenocarcinoma cell line [12]  
†Hepatocellular carcinoma cell line [13] 

 

 



Target product profiles, such as the example in Table 1, are typically defined based on the existing body of 
knowledge and experience of development of orally dosed drugs.  Many published examples have focused on 
analysis of simple ‘drug-like’ properties for known drugs, such as molecular weight (MW), lipophilicity (logP or 
logD), polar surface area (PSA), counts of hydrogen bond acceptors (HBA), donors (HBD), aromatic rings 
(AROM) and rotatable bonds (ROTB) [3] [4] [5] [6] [7].  These ‘drug-like’ profiles are sometimes based on the 
opinion and experience of drug discovery scientists, such as the CNS MPO score described by Wager et al. [8] 
for identifying compounds intended for central nervous system targets. In other cases, the criteria may be 
derived from statistical analysis of individual compound properties and combined post-hoc to form a required 
profile; for example, Lipinski’s Rule of Five [5] and the 3/75 concept introduced by Pfizer, which relates 
physicochemical properties (logP > 3 and topological PSA < 75 Å

2
) to higher likelihood of adverse outcomes in 

preclinical toxicology studies at a plasma Cmax concentration less than 10µM  [6].  

However, as the range and volume of experimental and calculated data generated in early drug discovery 
increases, it is not immediately obvious how one might generalise these approaches to more complex multi-
dimensional data and different drug discovery objectives, such as lowering the risk of adverse events or 
alternative routes of administration. A subjective approach may not necessarily yield the optimal property 
profile and one cannot use this approach to construct profiles for objectives where expert knowledge might be 
lacking or the range of experimental and calculated properties that could be used is very large. 

Identifying an appropriate property profile is also challenging because, while it is relatively straightforward to 
identify trends for individual properties, a successful compound may require multiple criteria to be satisfied 
simultaneously.  Furthermore, if some properties in the profile are highly correlated and therefore redundant, 
we would like to remove the redundant properties from the profile in order to focus only on the relevant 
subset of profile properties. This is particularly important when data is obtained experimentally, because we 
do not want to spend valuable time and resources generating data that adds little value to our ability to select 
successful compounds. 

One approach to address these issues would be to automatically examine historical compound data relating a 
drug discovery objective to the properties of compounds and use this data to identify the key property criteria. 
This would enable us to process large amounts of data quickly and increase the objectivity of the analysis. 
However, because the available data for this analysis is unlikely to be exhaustive, it is important to also allow 
scientists to modify the criteria based on their knowledge of the underlying biology and chemistry. To satisfy 
this goal, here we will describe an approach called ‘rule induction’, which can analyse historical data to 
automatically obtain property criteria as ‘rules’ that are easy to interpret and modify, while still retaining 
objectivity as the rules are based on empirical data. 

A ‘rule’ is a set of property criteria that can be used to identify desirable compounds. Undoubtedly, the best-
known, simple example of such a rule is Lipinski’s Rule of Five [9], which places bounds on the values of four 
physicochemical properties (MW, logP, HBA and HBD) to help medicinal chemists identify compounds with 
good oral absorption. A rule can also be visualised as a ‘box’ in property space containing significantly more 
desirable than undesirable compounds, as illustrated in Figure 1h. Notice that in this instance, there are 
multiple boxes that contain a high percentage of desirable compounds, representing different rules that select 
compounds in different regions of property space. 

In the following section we will describe a method to identify rules from complex, multi-dimensional data, 
called the Patient Rule Induction Method (PRIM) [10]. We will then briefly discuss methods for application of 
multi-parameter rules before describing two example applications, to the derivation of rules for simple ‘drug-
like’ properties and experimental data relating to compound toxicity. 

The Patient Rule Induction Method 
As discussed above, our goal of finding rules for selection of compounds with an improved chance of success 
can be formulated as the problem of deriving a set of boxes in property space, known as a ‘box covering’, from 
historical compound data. To do this, PRIM searches for boxes in property space over which the mean value of 
the objective we wish to achieve, defined as 

     
                                         

                          
, 

 is significantly higher than over the full property space.  



For simplicity of illustration, we will describe the workings of PRIM for binary categorical objectives 
(good/bad), so that maximising the mean objective value is equivalent to maximising the proportion of 
desirable compounds. However, the method can also be used to identify desirable compounds that maximise 
or minimise a continuous objective value. 

The first step in PRIM is to construct a single box in property space with a high proportion of desirable 
compounds relative to the full data set, subject to a minimum support constraint. The support is defined as the 
total proportion of compounds in the box relative to the full set, i.e. 

        
                          

                               
. 

 Intuitively, we can think of the box construction strategy as a process of ‘top-down peeling’ followed by 
‘bottom-up pasting’, described by the following steps and illustrated in Figure 1: 

1. Start with a box in the property space covering the full set of compounds  (Figure 1a) 
 

2. Consider compressing the box at each ‘face’ in turn; this is called ‘peeling’  
 

3. Remove the ‘face’ that results in the largest increase in the proportion of desirable compounds 
(Figure 1b). The amount of data removed at each peel is controlled by a ‘peeling fraction’, which is 
typically small, e.g. 5%. The small proportion of data removed at each step gives rise to the term 
patient rule induction, in contrast with traditional recursive partitioning, which removes 50% of the 
data with each step. 
 

4. Repeat steps 1 and 2 until a small box is obtained that contains a high percentage of desirable 
compounds, subject to a minimum support constraint to avoid overtraining (Figure 1c) 
 

5. The peeling process is not guaranteed to produce the optimal box, as each peel is made based only on 
the information available to it at the time; hence the peeling process is reversed by repeatedly 
‘expanding’ each box face in turn as long as the proportion of desirable compounds can be increased. 
This is called ‘pasting’ (Figure 1d). 
 

6. Repeat step 5 until the proportion of desirable compounds in the box can no longer be increased 
(Figure 1e) 
 

7. This peeling-and-pasting process results in a ‘peeling sequence’ of boxes, ranging from those with a 
high proportion of desirable compounds and low support to those with a high support and (relatively) 
low proportion of desirable compounds 
 
 

8. The box chosen from the peeling sequence is the one that maximises the proportion of desirable 
compounds selected from the validation set, subject to a user-specified minimum support (Figure 1f) 

This gives us a single box, corresponding to a single rule, but it may be that there are additional boxes 
containing a high proportion of desirable compounds that can be discovered by “looking elsewhere” in 
property space. To search for another such box, the compounds contained by the first box obtained can be 
removed (Figure 1g) and Steps 1-8 above repeated. This process is, in turn, repeated until no further boxes can 
be found. The final result will be a ‘covering’ of boxes that collectively describe the regions of property space 
where the proportion of desirable compounds is high (Figure 1h). 
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Figure 1. An illustration of the PRIM algorithm to identify boxes in a two-dimensional property space corresponding to 
rules for selection of compounds with a high chance of achieving a desired objective. The corresponding steps in the 
process are described in the text. The points in each plot correspond to compounds with existing data, plotted in the 
property space; desirable compounds are highlighted in red, undesirable compounds in blue. Boxes shown as dashed 
lines correspond to potential rules, and those highlighted in green correspond to those selected by the algorithm. 

 

  



We now have a series of boxes, each corresponding to an individual rule, that will increase the probability of 
identifying desirable compounds. However, we might also wish to know which of the property criteria defining 
a rule are most important to determining the rule’s ability to distinguish ‘good’ from ‘bad’ compounds.  

This importance of an individual criterion is determined in a probabilistic manner, by considering the false 
negative rate of the criterion; the importance of each property criterion is defined to be 1 minus the false 
negative rate of the criterion, as computed over the training set. In other words, the most important property 
criteria are those where there is a very low probability of finding a desirable compound that fails to meet the 
criterion. The resultant weighting for each criterion will range from 0 to 1, with 0 indicating no importance and 
1 being the maximum importance value. In addition to helping the chemist decide whether any properties can 
be compromised without significantly affecting the odds of satisfying the objective, these weightings provide 
an indication as to what (experimental or calculated) property data should be generated to aid compound 
prioritisation decisions. 

Applying Multi-Parametric Rules 
Whether a rule is derived based on scientists’ experience, analysis of historical data or a combination thereof, 
there are a number of approaches with which to apply the rule to the selection of compounds [2]. 

Probably the most common approach is to apply the property criteria corresponding to a rule as filters, 
rejecting compounds that do not meet a defined cut-off in each parameter. While simple to apply and 
interpret, this approach has significant drawbacks.  In particular, hard cut-offs draw inappropriately harsh 
distinctions between similar compounds; for example, a common criterion for logP is that it should be less 
than 5, but does a compound with a logP of 5.1 carry a significantly greater risk than another with logP of 4.9? 
This issue is further compounded by the fact that many of these properties have significant uncertainty in the 
reported values. Again, considering the example of logP, a predictive model may have an uncertainty of 0.5 log 
units, meaning that the two hypothetical compounds discussed previously may not even be confidently 
distinguishable on the basis of these data. 

 An alternative approach is to define each property criteria as ‘desirability function’ that defines the desirability 
of the potential values of a property on a scale of 0 to 1. A desirability function can take any shape, allowing 
the impact of a poor outcome to be weighted appropriately against other factors and ‘softening’ hard cut-offs. 
The desirabilities of multiple properties can then be combined to obtain an overall “score” for the compound 
reflecting the overall balance of properties. An example of this approach is the quantitative estimate of drug-
likeness (QED) method as proposed by Bickerton et al. [11]. 

The uncertainty in the underlying data, due to experimental variability or statistical error, can be explicitly 
taken into account using a method such as probabilistic scoring [12]. This method builds on the foundation of 
desirability functions to calculate a score reflecting the likelihood of success of each compound against the 
property profile, taking into account both the importance of each criterion to the overall project objective and 
the uncertainty in each data point. The uncertainty in the overall score can also be estimated, making it clear 
when compounds can be confidently distinguished and avoiding missed opportunities due to inappropriately 
rejecting compounds based on uncertain data. This is illustrated in Figure 2, which shows an example of a 
scoring profile and resulting output of probabilistic scoring. In the examples below, the rules derived by rule 
induction were applied using the probabilistic scoring method implemented in StarDrop version 5.5 [13]. 

 



 

Figure 2. An example output from probabilistic scoring for 30 compounds. The compounds are ordered from left to right 
along the x-axis in order of their score and overall score for each compound is plotted on the y-axis. The overall 
uncertainty in each score (one standard deviation), due to the uncertainty in the underlying data, is shown by error bars 
around the corresponding point. From this it can be seen that approximately the bottom 50% of compounds may be 
confidently rejected, as their error bars do not overlap with that of the top-scoring compound. 

The scores have been calculated against the inset scoring profile, showing the property criteria and importance of each 
criterion to the overall project objective. Underlying each criterion is a desirability function. 

Example 1: Identifying Drug-like Compounds 
As discussed above, many measures of ‘drug-likeness’ have been discussed in the literature, relating easily 
calculated molecular properties to outcomes such as oral activity or ‘developability’ [9] [5] [4] [6] [11]. Many of 
these take the form of simple rules, but Bickerton et al. describes a quantitative metric, QED, based on a 
combination of the outputs of desirability functions for logP, HBA, HBD, PSA, ROTB, AROM and the number of 
alerts for undesirable functionalities (ALERT) [11]. Each desirability function corresponds to a single molecular 
property, and is derived empirically by fitting to this property’s distribution over a set of 771 approved oral 
drugs. To compute the QED score for an individual compound, these desirability functions are combined by 
taking the geometric mean of all eight desirability scores, giving an overall QED score ranging from 0 (all 
properties are completely undesirable) to 1 (all properties are ideal). 

An issue with this approach is that the QED score for a compound is based solely on the property distributions 
of a set of approved oral drugs; it does not take into account whether these distributions can differentiate the 
drugs from the ‘non-drugs’, i.e. the other compounds that might be synthesised. For this reason, an alternative 
approach, the Relative Drug Likelihood metric (RDL) [14], defines a compound’s desirability score for a 
property to be the relative probability of obtaining this compound’s property value if it is a drug versus a ‘non-
drug’.  

However, both of these approaches only consider the effect of one property at a time on the drug 
classification and combine these properties post-hoc. Conversely, PRIM considers all property criteria 
simultaneously to find those criteria that, in combination, distinguish drugs from non-drugs. Furthermore, 
PRIM will also tell us whether any of these eight properties are redundant for the objective of classifying a 
compound as a drug or non-drug.  

Figure 3 shows the rules obtained by PRIM when applied to a data set comprising 771 ‘positive’ oral drugs and 
1,000 ‘negative’ non-drug compounds randomly selected from ChEMBL for the objective of identifying oral 
drugs. The data set was randomly split into training and validation sets containing 70% and 30% of the 
compounds respectively, and we generated rules using minimum support values of 20% and 50%. Notice that 
the rules obtained only contain criteria for a subset of the eight properties used to train the algorithm, 
indicating that the excluded properties do not impart a significant amount of extra information about the 
objective compared with the subset of properties chosen by PRIM. 



One common way to assess the performance of classifiers is a Receiver Operating Characteristic (ROC) curve. 
Figure 4 shows the performance of QED, RDL, and the rules generated by PRIM on the task of differentiating 
an independent test set of 247 oral drugs from 1000 non-drugs randomly selected from ChEMBL (different 
from those used to find the rules). Although the PRIM rules only specify criteria for a subset of the original 
eight properties, they are able to match the performance of RDL on this benchmark. Note also that QED 
performs poorly in this instance with an AUC of just 0.52, showing that the choice of ‘negative’ set has a 
substantial impact on the effectiveness of this metric. 

Example 2: Toxicity Classification 
We also applied PRIM to search for rules that help distinguish compounds exhibiting in vivo toxicity from those 
that do not have significantly increased risk, based on experimentally measured in vitro data. In this example, 
we have explored data sets of known drugs to their cardiotoxic and hepatotoxic potential in clinic using set of 
biochemical assays. These drugs were profiled in CEREP Bioprint® assays panel (see 
http://www.cerep.fr/Cerep/Users/pages/productsservices/bioprintservices.asp), which offers biochemical 
assay against 185 targets including GPCR, kinase, nuclear hormone receptors and Cytochrome P450s, etc., and 
assess the extent of off-target pharmacology of these compounds. These biochemical assays were run at single 
concentration of 10 μM. A full list of the targets is included in the supplementary information (Table S1). A 
reporting odds ratio (ROR) was used to detect a signal of potential drug-adverse event association using 
information from the FDA Adverse Event Reporting system (FAERS, formerly AERS) database (see 
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/defa
ult.htm), which contains voluntary reports of adverse events submitted to the FDA by healthcare practitioners, 
manufacturers and consumers. The ROR signals for cardiotoxicity and hepatotoxicity were calculated for these 
drugs as reported elsewhere [15]. A ROR signal cut-off of 2.5 or above at the System Organ Class (SOC) level in 
the MedDRA Ontology was used to classify compounds as having cardiac or hepatic risks in the clinic, whereas 
a ROR signal of less than 2.5 was used to classify compounds as having no cardio or hepatotoxicity. Tables S2 
and S3 list these compounds and their toxicity classification based on the ROR signal cut-off. We split each of 
the two data sets into independent training, validation, and test sets comprising 70%, 15%, and 15% of the full 
set respectively.  

The first data set consisted of 474 known drugs, 408 of which were labelled as ‘cardiotoxic’ and 66 as ‘non-
cardiotoxic’ based on the ROR signal cut-off.  It is worth noting that many of the drugs classified as cardiotoxic 
here are in fact used in the treatment of cardiovascular diseases and so their ‘toxicity’ may result from either 
the underlying disease state or from the intended pharmacology of the drug in question. PRIM generated rules 
comprising property criteria for increasing the probability of selecting non-cardiotoxic compounds from the 
training set, which are validated using compounds in the test and validation sets.  

Figure 3c shows the rule obtained using a minimum support value of 8%. It is worthwhile to mention that the 
algorithm has only used the three most predictive properties (out of a total of 185 properties) in order to 
prevent overtraining. The rule exhibits a large mean improvement of 419% over the test set, and the ROC 
curve (Figure 4b) generated from the test set compounds shows that the rule performs well at selecting non-
cardiotoxic compounds. 5 of the 6 test set compounds selected by the rule are non-cardiotoxic, whereas only 
13 of 81 compounds in the full test set are non-cardiotoxic. This means that over 83% of the compounds 
selected by the rule are non-cardiotoxic, so the rule offers a substantial improvement over chance, as we 
would expect roughly 16% of the selected compounds to be non-cardiotoxic if we randomly guessed which 
compounds were non-cardiotoxic. Furthermore, of the 20 test set compounds that fail every criterion in the 
rule, 19 are cardiotoxic, implying that any compound failing all the criteria comprising the rule has a very high 
chance of being cardiotoxic. 
 
 The specific values of the three property criteria identified are features of the measurements for specific 
compounds in the data set and could be manually rounded to more easily recognised values. However, it is 
clear that they essentially correspond to absence of inhibition of the histamine 2 (H2), serotonin 5-
Hydroxytryptamine (5-HT1A) and adenosine 1 (A1) receptors, which is biologically plausible, because 
interaction with these receptors have been previously associated with cardiotoxicity. For example, activation 
of 5-HT1A are known to cause decrease in blood pressure and heart rate via modulation of sympathetic nerve 
activity [16] [17]; Likewise, stimulation of adenosine receptor cause bradycardia and hypotension [18]and the 
activation of H2 receptor are reported to cause vasorelaxation as reported by Jansen-Olesen et al. [19]. 
  

http://www.cerep.fr/Cerep/Users/pages/productsservices/bioprintservices.asp
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
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Val  56  14  

Test 39 11 
 

(d) 
Figure 3. Examples of multi-parameter scoring profiles derived using PRIM. (a) and (b) show rules for identifying drug-
like compounds obtained by PRIM when applied to a data set comprising 771 “positive” oral drugs and 1,000 “negative” 
non-drug compounds randomly selected from ChEMBL. The corresponding predictive performance of these rules over 
the training and validation sets is also shown, for rules were generated with a minimum support of 20% (a) and 50% (b). 

(c) a rule for identifying non-cardiotoxic compounds obtained by PRIM when applied to a data set consisting of 408 
cardiotoxic and 66 non-cardiotoxic compounds. The corresponding predictive performance of this rule over the training, 
validation, and test sets is also shown. The criteria correspond to percentage inhibition of the histamine 2 (H2), 
serotonin receptor 5-HT1A and adenosine 1 (A1) receptors.  

(d) a rule for identifying non-hepatotoxic compounds obtained by PRIM when applied to a data set consisting of 168 
hepatotoxic and 302 non-hepatotoxic compounds. The corresponding predictive performance of this rule over the 
training, validation, and test sets is also shown. The criteria correspond to percentage inhibition of the serotonin 5-HT1D 
receptor and monoamine oxidase A (MAO_A) and cyclooxygenase 1 (COX1) enzymes. 



 
(a) 

 
(b) 

Figure 4 ROC plots of the true positive rate (TPR (sensitivity)) against the false positive rate (FPR (1 - specificity)) for the 
classification of compounds. A perfect classifier would be represented by the point in the top left and a performance 
below the identity line indicates worse performance than a random classification. A greater area under the curve (AUC) 
for a classifier indicates higher performance. 

 (a) ROC plot for classification of compounds as orally absorbed drugs or otherwise using RDL, QED, and PRIM with a 
minimum support of 20% and 50%. In this case, a set of 247 orally administered drugs was differentiated from 1,000 
randomly selected compounds from ChEMBL; the AUC for QED is 0.52, RDL is 0.70, and PRIM is 0.69 for a minimum 
support of 20% and 0.70 for a minimum support of 50%. 

(b) Classification of compounds as non-cardiotoxic or otherwise using the rule in Figure 3(c) derived with PRIM. Here, a 
set of 66 non-cardiotoxic compounds was differentiated from 408 cardiotoxic compounds. The AUC in this case is 0.72. 

 
The second data set contained 470 compounds, 302 of which were labelled as ‘hepatotoxic’ and 168 as ‘non-
hepatotoxic’. Here we searched for rules to increase the probability of selecting non-hepatotoxic compounds 
based on a minimum support value of 10%.  

Figure 3d shows the rule obtained for selection of non-hepatotoxic compounds. The rule shows a reasonable 
mean improvement of 39% over the test set, with 9 of the 10 test set compounds being non-hepatotoxic 
versus 51 non-hepatotoxic compounds out of 80 in the full test set. However, the property criteria themselves 
do not appear to be biologically relevant. The rule relates to binding to the 5-hydroxytryptamine 1D (5-HT1D) 
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receptor, mono-amine oxidase A (MAO-A) and cyclooxygenase 1 (COX1) enzymes. However, the criterion for 5-
HT1D inhibition suggest that an increased inhibition of this enzyme reduces the risk of hepatotoxicity, while the 
criterion for inhibition of MAO-A suggest a narrow range of inhibition reduces hepatotoxicity risk; both of 
which are implausible.  These statistically significant correlations may arise due to chance in a relatively small 
and noisy data with many properties or may be due to correlation of a property with another causative 
relationship. This demonstrates the advantage of outputting rules as interpretable property criteria over a 
“black-box” classifier; even if a rule appears to offer good predictive performance, we may still wish to discard 
or modify it based on an expert’s understanding of the specific property criteria comprising the rule. In this 
case, a plausible rule has not been found because the large majority of the targets for which data are present 
in the data set are not known to relate with hepatotoxicity. In the few examples of targets that are known to 

correlate with this toxic outcome, such as PPAR [20] [21], there are a statistically insignificant number of 
inhibitors in the data set and hence no correlation could be found. This reinforces the point that any method 
will be limited by the quality of data available. 

Conclusions 
Making progress in drug discovery relies on making good decisions based on complex, multi-parameter data. 
MPO methods provide reasonable approaches to assess compound data for multiple properties against a 
profile of criteria, to identify the compounds most likely to achieve a drug discovery project’s objective. 
However, a question often remains regarding the most appropriate property profile to use for a specific 
project’s therapeutic objectives. 

In this paper, we have discussed an approach based on PRIM and shown that it can generate multi-parameter 
rules for identifying desirable compounds from both calculated and experimental data. These rules are highly 
interpretable and easy to modify based on expert opinion, while still offering good predictive performance on 
unseen data. Furthermore, on data sets with large numbers of properties, we have demonstrated a method 
for determining the importance of each property contributing to the objective, with only properties relevant to 
the objective forming part of the final rule(s). This will allow experimental resources to be prioritised 
appropriately, with data for highly important properties being more valuable to generate than data for other, 
less-relevant properties. 

The utility of PRIM was demonstrated by identifying rules in two example applications, one for deriving rules 
for ‘drug-like’ properties and the other for distinguishing between toxic and non-toxic compounds. Using an 
MPO method, such as probabilistic scoring, these rules can then be applied prospectively to new data sets to 
select and prioritise compounds. 

One limitation to the use of these rule induction methods is that, like any conventional modelling method, 
they require a statistically significant number of data points from which to derive multi-parameter rules. In 
many cases, the number of compounds for which results are available for complex endpoints, such as clinical 
success, is limited. The data set may also be highly biased toward one outcome. However, as illustrated by the 
cardiotoxicity example above, rule induction methods have been shown to be robust to bias in the data set, 
and often perform better when the minority of the results correspond to the desired outcome. This is because 
rule induction attempts to identify rules that significantly increase the mean value of the objective and 
contrasts with most conventional machine learning algorithms, which typically perform better for classification 
of the majority class. Furthermore, where necessary complex objectives may be broken down into sub-
objectives for which sufficient data are available, e.g. bioavailability, exposure, safety, etc., and the resulting 
property rules combined to identify those compounds which are most likely to satisfy all of the sub-objectives. 

  



Supplementary Information 
Table S1 lists the targets for which inhibition data are included in the data sets used to identify rules for 
hepatotoxicity and cardiotoxicity. 

Table S2 lists the drugs used to derive rules for reduced cardiotoxicity risk together with their cardiotoxic 
classification based on a ROR signal cut-off of 2.5. 

Table S3 lists the drugs used to derive rules for reduced hepatotoxicity risk together with their hepatotoxic 
classification based on a ROR signal cut-off of 2.5. 

The positive and negative data sets used to derive and test the rules for ‘drug-like’ properties for oral drugs are 
provided. 
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