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Abstract
In this article, we review recent developments in the prediction of Absorption, Distri-
bution, Metabolism, Excretion and Toxicity (ADMET) properties by Quantitative
Structure –Activity Relationships (QSAR). We consider advances in statistical modelling
techniques, molecular descriptors and the sets of data used for model building and
changes in the way in which predictive ADMET models are being applied in drug
discovery. We also discuss the current challenges that remain to be addressed. While there
has been progress in the adoption of non-linear modelling techniques such as Support
Vector Machines (SVM) and Bayesian Neural Networks (BNNs), the full advantages of
these Amachine learningB techniques cannot be realised without further developments in
molecular descriptors and availability of large, high-quality datasets. The largest pharma-
ceutical companies have developed large in-house databases containing consistently mea-
sured compound properties. However, these data are not yet available in the public
domain and many models are still based on small AhistoricalB datasets taken from the
literature. Probably, the largest remaining challenge is the full integration of predictive
ADMET modelling in the drug discovery process. Until in silico models are applied to
make effective decisions in a multi-parameter optimisation process, the full value they
could bring will not be realised.

1 Introduction

The importance of optimising Absorption, Distribution,
Metabolism, Excretion and Toxicity (ADMET) properties
of potential drug molecules is now widely recognised [1].
A potent molecule is not sufficient to achieve an effica-
cious drug. For efficacy, a drug must reach the site of the
target in the body at sufficient concentration with a specif-
ic time to achieve the required pharmacological effect.
Furthermore, the drug must be safe at a therapeutic con-
centration, exhibiting minimal side effects. Therefore, it is
the balance of potency, selectivity and ADMET properties
that will ultimately determine the success of a potential
drug molecule.
Historically, ADMET properties were often considered

relatively late in the drug discovery process, in late lead
optimisation or even preclinical development. The result
of this was a high attrition rate in the later stages of R&D,
where the costs increase dramatically. This in turn contrib-
uted to the ever-increasing average cost of developing a
marketed drug, now estimated by some as US$ 0.8 – 1.7
billion [2]. The reason for the delay in consideration of
ADMET properties was the high cost and low throughput

of measurement, which relied predominantly on in vivo
experiments.
Attitudes began to change in light of notable successes

of drugs such as Fluconazole (1991) [3], which achieved an
excellent balance of potency with ADMET properties to
achieve market dominance in their therapeutic area. The
chemistries from which these drugs were derived were op-
timised for improved ADMET properties early in the drug
discovery process. This illustrated the advantage of early
optimisation of ADMET properties and motivated the de-
velopment of in vitro technologies that could be used to
measure key properties at higher throughput and lower
cost than conventional in vivo experiments [4]. The effects
of these could be seen by the late 1990s, when the reported
contribution of ADME to attrition in clinical development
fell, although failures due to toxicity remained high [5].
A major hurdle to performing toxicity studies earlier in

the discovery process is that the causes and consequences
of toxicity are various and variable compared to ADME
properties. Toxicity is frequently a multi-factorial event
with a plethora of possible responses from lachrymation to
cancer. The toxic response observed may be the end result
of a whole series of chemical and biochemical events that
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can only occur in an intact animal and may be dose- and
time-dependent. Performing whole animal studies is ex-
pensive and is not practicable for a large number of com-
pounds at an early stage of investigation. Furthermore,
these tests are often designed to look for specific effects
that have already been reported for related compounds
with known toxicophores.
Clearly, the earlier it is possible to consider the AD-

MET properties of molecules, the larger the potential im-
pact on the productivity of drug discovery. Ideally, one
would wish to examine as wide as possible a range of
chemistries, to identify those that are most likely to have
appropriate ADMET properties as well as potency. This is
most efficient if the ADMET properties can be predicted
from the chemical structure, so that large numbers of com-
pounds could be considered at low cost prior to choosing a
synthetic strategy. The advent of in vitro methods for
measuring specific ADMET properties led to an increase
in the availability of data on a wide range of compounds,
making it possible to investigate the rules by which the
chemical structure of a molecule determine its ADMET
properties, i.e. to build predictive models of ADMET
properties. Thus, the late 1990s and early 2000s saw a dra-
matic increase in the development of predictive, or in sili-
co, models of ADMET properties [6 – 8].
In silico modelling of ADMET properties can be broad-

ly divided into three categories: molecular modelling,
physiologically based pharmacokinetic modelling and stat-
istical modelling [9]. Molecular modelling approaches in-
clude quantum and classical mechanical methods, homolo-
gy modelling and pharmacophore models and can be used
where the underlying molecular mechanism of a property
is understood. Physiologically based pharmacokinetic
modelling integrates several factors responsible for
ADME processes in one model and attempts to simulate
the pharmacokinetics of a drug in the whole organism.
Statistical modelling is applied when the molecular mecha-
nism of an ADMET property is not clear or cannot be effi-
ciently modelled at the molecular level and largely uses
Quantitative Structure –Activity Relationship (QSAR)
approaches. In this paper, we will concentrate on QSAR
modelling techniques.
This article will review the progress made over the past

5 years in the development of predictive ADMET models
and the current state-of-the-art. We will discuss trends in
three fundamental aspects of predictive model develop-
ment

(1) Data: The availability of sets of molecules for which
ADMET properties have been determined.

(2) Descriptors: Methods for characterisation of molecule
structures that capture the biological or chemical
mechanisms determining a moleculeBs properties.

(3) Modelling techniques: Statistical techniques that can
identify the key descriptors and their quantitative rela-
tionship with the property being modelled.

Predictive ADMET modelling has moved from being pre-
dominantly of AacademicB interest to a position of in-
creased practical importance in pharmaceutical R&D. In
particular, the application of predictive ADMET model-
ling is increasingly undertaken by non-computational sci-
entists and the tools for deployment of models to the desk-
top have advanced. The increased availability of data,
both in silico and in vitro on a wide range of properties has
created an interest in Amulti-parameter optimisationB [1],
whereby the explicit goal is to achieve a balance of multi-
ple properties simultaneously. We will discuss this evolu-
tion of modelling tools from simple interfaces to run mod-
els and collect the resulting data, into powerful tools for
analysis and decision-support.
The following sections discuss the trends in data, de-

scriptors and modelling techniques for predictive ADMET
models and the application of models in drug discovery. Fi-
nally, we will draw these threads together to reach conclu-
sions and contemplate the potential future developments
in this field.

2 Data

The development of accurate and applicable predictive
models for ADMET properties is highly dependent upon
the data on which the models are built. A dataset would
be characterised as high quality if the measurements are
reliable, consistent and reproducible with low experimen-
tal errors. Unfortunately, the availability of experimental
data for ADMET properties is often limited in quantity
and quality. This is particularly true of in vivo properties
obtained directly from humans, where data is typically
only available for compounds in clinical development.
Published data from in vitro experiments also show a high
degree of variability. Reported inhibition data for P450
isoform CYP2D6 for ketoconazole have a 17-fold varia-
tion [9]. Ideally, data used to build ADMET models must
be carefully quality-controlled and should be generated
under a single experimental protocol for any one model
[9]. With the increased application of ADMET evaluation
during the course of drug discovery, one would expect an
abundance of experimental ADMET data available to
model. However, the reality is often different with a pauci-
ty of high-quality ADMET data available for model build-
ing, except in the largest companies with comprehensive
in-house databases. Where in-house databases are not
available, modellers must resort to peer-reviewed litera-
ture, internet resources or commercially available databas-
es. Compilations of data for human oral absorption and
bioavailability, plasma protein binding and blood-brain
permeation have been extensively published and used to
formulate predictive models. These AhistoricalB datasets
were put together from various sources [10] and while of-
ten carefully quality controlled, they are subject to varia-
bility due to experimental conditions and inter-laboratory
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errors. Models built on literature data may hold only limit-
ed value for true predictive use within pharmaceutical
companies [11].
Another important dataset characteristic is its chemical

diversity or coverage [11]. Global models cover as wide a
range of chemical space as possible. However, as a drug
discovery project progresses, the chemistry under consid-
eration often focuses on a small number of chemical series
in which the molecules are structurally similar. Global
models may lack the resolution required to distinguish be-
tween molecules with subtle differences.
Predictive models based on proprietary datasets have

emerged during the past 5 years. The need to know the
ADMET properties of drug candidates has propelled the
development of numerous high-throughput screening
methods, which have resulted in a sufficient quantity of
data for the analysis of the relationship between structural
properties and ADMET properties. Furthermore, efficient
data management has also significantly eased the access to
data for model building. For instance, knowledge-based
analyses of proprietary oral bioavailability data in rat, a
measurement frequently used as a surrogate for human
oral bioavailability, have been published; Veber et al.
based their studies on a dataset of 1100 compounds from
diverse GSK projects [12], 434 Pharmacia compounds
were analysed by Lu et al. [13] and Martin published a
study of 553 compounds from an Abbot in-house project
[14]. In addition, OBBrien and de Groot published the re-
sults of in silico modelling of affinities for the human
ether-a-go-go-related gene (hERG) ion channel and Cyto-
chrome P4502D6 (CYP2D6) drug metabolising enzyme of
a very large dataset of 58963 and 2410 Pfizer compounds,
respectively [15]. Seierstad and Agrafiotis recently report-
ed a QSAR model of hERG binding using a diverse train-
ing set of 400 compounds, tested in a single assay under
the same experimental conditions [16].
Questions have recently arisen regarding the meaning

and relevance of experimental data used in model building
for the desired ADMET endpoints [17]. For instance, the
majority of in silico models for drug brain penetration use
log (BB) as the index of Blood-Brain Barrier (BBB) per-
meability, where BB is equal to the brain:blood drug con-
centration ratio at some defined time point. There are log
(BB) data for approximately 150 compounds in the public
domain [18]. However, the value of the log (BB) parame-
ter is now uncertain. The main concern expressed over
these data is that the brain concentration is the sum of the
bound and free drug concentration, and it has been sug-
gested that future BBB permeation models be based not
on log (BB), but on log PS; where log PS is the permeabili-
ty-surface area product that represents a true measure of
the rate of transfer of the compound from the blood to the
brain. Two models predicting log PS values have been pub-
lished, both based on very small datasets; 50 and 23 com-
pounds, respectively [18].

Over the past few years, new priorities have been identi-
fied for modelling ADMET properties. For example, the
cardiotoxicity of many chemical entities has been linked to
their potent inhibition of the hERG channel; an effect that
can lead to prolongation of the QT interval of the heart
beat and in the worst case, death [19]. The link between
hERG inhibition and QT prolongation has become anoth-
er important component of preclinical safety evaluation
and compound, testing as blockade of this channel is also
used as a preliminary assessment of proarrythmic liability.
Not surprisingly, the urgency of the matter has led to the
development of a variety of in vitro and in vivo tests to as-
sess the hERG inhibition of new chemical entities and in-
hibition data used to build a number of in silico models to
predict this potential toxicity (Table 1). However, hERG
affinity measurements are highly dependent on experi-
mental measurement conditions such as gating voltage and
temperature and, hence, prone to large inter-laboratory
discrepancies. Variations in literature data for a single
compound can be quite significant and, consequently, con-
clusions regarding hERG-drug binding interactions based
on a model built with such data should be made with cau-
tion.
Whilst datasets may be available in-house or in the liter-

ature, to build predictive models for the major ADMET
hurdles, the properties covered are far from comprehen-
sive. A few years ago, it was expected that advances in
technology and better understanding of the phenomena
would lead to an increase in the range of properties being
modelled [19]. However, this has yet to happen in practice.
For example, insufficient data are currently available to

predict drug transport by proteins expressed in the major
clearance organs, the liver and kidney. Furthermore, mod-
els to predict the major routes of elimination for a com-
pound are not widespread and building successful in silico
models for such properties will depend upon the imple-
mentation and conduct of suitable screens and subsequent
dataset generation [19].

3 Descriptors

Using an appropriate set of descriptors, the most impor-
tant features of the mechanism giving rise to a measured
property are captured and a mathematical correlation with
those observations can be derived. It is important that the
predictions can be interpreted to provide guidance on the
effects of chemical modifications on the predicted proper-
ty. For this reason, wherever possible chemically interpret-
able descriptors are used, despite some potential penalty
in model accuracy.
There are currently over 3000 molecular descriptors that

can be used in in silico modelling [20]. The form of the de-
scriptors employed by a model often depends on the end-
point to be predicted. Some descriptors contain informa-
tion about the conformation of a compound, which is im-
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portant if predicting specific interactions with a receptor.
Other descriptors do not contain any geometrical informa-
tion and are non-specific in nature. These are often used
for the prediction of physicochemical properties but can
also provide more general descriptions of the underlying
properties required for receptor binding.
Descriptors have been designed to take into account

size, lipophilicity and electronic effects as well as the hy-
drogen-bond propensity of molecules. Descriptors can be
defined by the dimensionality of the structural representa-
tion [21]. Two-Dimensional (2-D) descriptors are calculat-
ed from the molecular graph alone, and they do not use in-
formation related to the Three-Dimensional (3-D) confor-
mation of model compounds. 2-D descriptors are typically
simple descriptors that count atoms or functional groups
that may be relevant to specific mechanisms, for example,
hydrogen-bond donors and acceptors, acidic and basic
functionalities. 3-D descriptors are more complex descrip-
tors that try to explain the variance in biological activity
by capturing the effects relevant to compound/protein in-
teraction.
3-D descriptors are often more chemically intuitive than

2-D descriptors, as they capture, more efficiently, the spe-
cific interactions occurring between a receptor and a com-
pound. A medicinal chemist can use this information to
modify chemical structure to try and reach the desired af-
finity. For instance, pharmacophore models and 3-D mod-
els developed on CoMFA [22] and CoMSIA [23] to predict
interaction between drugs and the hERG ion channel
have highlighted important chemical features which can
lead to high hERG affinity. Hence, the presence of a nitro-
gen atom positively charged at pH 7.4, surrounded by a
bulky hydrophobic moiety, has been shown to increase
hERG affinity [24]. However, despite providing important
insights for the protein/compound interactions, 3-D mod-

els have had limited application due to the lack of a hERG
crystal structure, effective techniques for the sampling of
active conformations and the need for 3-D molecular
alignment of diverse structures [21]. In addition, the speed
of calculation for 3-D descriptors can limit their use in
Areal timeB compound assessment and design, and for large
datasets 2-D QSAR models are often the preferred option
[21].
The majority of in silico models for ADMET properties

have been developed using descriptors that have been
available for some time. Indeed, there have not been sig-
nificant changes in descriptor calculations for the past 5
years. Some of the commonly used descriptors, such as sol-
vation descriptors [25], the E-state descriptors [26] and
BCUT [27] descriptors, were first implemented in the
1990s. Even VolSurf, a relatively new approach developed
by Cruciani and applied to build in silico models for a
large number of ADMET properties [28], was introduced
some 6 years ago.
While the available descriptors capture general trends

in properties, often large numbers of descriptors are neces-
sary to obtain good correlations across diverse chemistry.
This, in turn, necessitates the use of large datasets to train
and test these models, and these are often unavailable
(see Sec. 2, Data). Therefore, the development of new de-
scriptors that relate more closely to the mechanisms of in-
teraction leading to observed ADMET properties and cor-
relate more strongly, is a challenge that remains to be ad-
dressed.

4 Modelling Techniques

What are the requirements for a good computational tool,
which would be useful and effective in ADMET model-
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Table 1. Recent publications of in silico modelling of hERG affinity.

Ref. Dataseta Descriptors Modelling techniqueb Statistic on test set

[40] 28/4 Homology model and 3-D (CoMSIA) CoMSIA R2
CV
d¼0.571

[41] 31/6 Pharmacophore and 3-D (CoMFA) PLS R2¼0.744
[42] 15/22 3-D Catalyst Catalyst R2¼0.83
[43] 322/16 3-D pharmacophore (GRIND) PLS R2¼0.94
[43] 518/26 3-D pharmacophore (GRIND) PLS R2¼0.90
[44] 244/38þ57 1-D, 2-D and 3-D ANN 93% of negatives

71% of positives
[45] 332/83 2-D and 3-D DT 85% of positives

71% of negatives
[16] 439/40 1-D and 2-D ANN R2¼0.52
[46] 55/13 2-D PLS R2¼0.81
[24] 71/19þ20 2-D SVR R2¼0.848
[15] 46967/11996 1-D and 2-D ANN/BSc 87% of positives

86% of negatives

a Number of compounds in training/number of compounds in test set.
b PLS, partial least square; ANN, neural network; DT, decision tree; SVR, system vector regression; BS, Bayesian statistics.
c Consensus modelling using models built on neural network and Bayesian statistics.
d R2

CV, cross-correlation coefficient.
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ling? These are; a high prediction accuracy, ability to deal
with multiple mechanisms of action, effective modelling of
non-linear relationships, ability to handle multi-dimen-
sional data and to ignore irrelevant descriptors, computa-
tional efficiency and robustness to overtraining. An ability
to produce an easily interpretable model is a very desira-
ble feature for a computational technique, but usually con-
flicts with some of the above requirements. One of the re-
cent demands on a modelling technique is the possibility
of estimating confidence in a prediction which can be used
in decision making when selecting the best compounds.
Since the inception of the ADMET modelling field, Par-

tial Least Squares (PLS), Multiple Linear Regression
(MLR), Artificial Neural Networks (ANNs) and Decision
Trees (DT) have been the most common methods for
modelling of ADMET properties. They still remain the
most popular even though they have a number of weak-
nesses. PLS and MLR are linear techniques which cannot
adequately model non-linear relationships and multiple
mechanisms of action. ANNs can handle non-linear prob-
lems, but are prone to overtraining, have problems with
network optimisation and model selection and are not effi-
cient in dealing with high-dimensional data without prese-
lection of descriptors.
DTs, also called recursive partitioning, is a very popular

method in QSAR modelling of ADMET properties. It
handles datasets containing a high number of variables,
has an embedded ability to select important descriptors
and is suitable for multiple mechanisms of action. Howev-
er, DTs often have quite low predictive ability, although
this drawback may be overcome by the tree ensemble
techniques such as Boosting [29, 30], Bagging (see papers
cited in [29]) and Random Forest [29], which give higher
prediction accuracy than a single tree. In recent years
these powerful methods have been increasingly used for
ADMET modelling.
A more recent entrant in the field is the Support Vector

Machines (SVM) technique which is widely recognised for
its remarkable generalisation ability. In the last 5 years, it
has become very popular in ADMET modelling as a non-
linear classification technique, but it is also applicable to
regression problems. An extensive review of applications
of this technique to ADMET modelling is given in [31].
Bayesian Neural Networks (BNNs) represent a special

type of neural net which overcome the problems of con-
ventional ANNs described above. BNNs are based on a
probabilistic interpretation of network training. Network
weights are found by Bayesian inference that gives an ob-
jective solution to the problem of conventional network
optimisation. This approach also provides the model pre-
dictions as probability distributions and therefore permits
evaluation of the confidence in prediction [32]. BNNs can
be successfully used together with an Automatic Relevance
Determination (ARD) procedure to select relevant de-
scriptors and develop an optimal model [32, 33]. Another
new promising method based on a Bayesian approach is

the Gaussian Processes technique which has been recently
applied to QSAR problems [34]. Gaussian processes have
been shown to be equivalent to an ANN with a single hid-
den layer containing an infinite number of nodes [35].
An unsupervised neural network algorithm called Koho-

nen Self-organising Maps has been successfully used to
build ADMET classification models [36]. This technique is
particularly efficient for dealing with properties having
multiple mechanisms of action and can be used as a de-
scriptor selection technique.
Many of the modelling techniques described above,

such as SVM and ANN, have trouble in handling high-di-
mensional data, i.e. the presence of many descriptors.
Therefore, methods for variable selection have to be em-
ployed with the aim of selecting a subset of relevant de-
scriptors for building a model. There are descriptor selec-
tion techniques that perform variable preselection prior to
model building, for example filtering descriptors with low
linear correlation with the target property or using a small
number of principal components of the descriptor matrix
to build a model [16]. Some variable selection methods are
embedded within the modelling algorithm; examples of
such algorithms are DTs and BNNs with ARD. However,
the most commonly used descriptor selection techniques
in ADMET prediction are those that are employed itera-
tively with the model building algorithm, such as forward
selection [16], backward elimination, Genetic Algorithm
(GA) [30, 37] and simulated annealing [16]. In the last few
years, novel algorithms such as artificial ant colony [38]
and particle swarms [31] have been applied to QSAR data-
sets and these methods could potentially be used to model
ADMET properties. The iterative selection methods are
more computationally demanding because the model has
to be trained for each subset of descriptors considered.
The demand for fast model (re)building whenever new

data becomes available combined with the use of a variety
of modern modelling techniques gave rise to a trend to de-
velop computational algorithms for automatic model gen-
eration [39]. The purpose of such algorithms is to save sci-
entistsB time, explore more modelling possibilities and
make a process for QSAR model building accessible to
non-experts. Automatic approaches to model building face
some difficulties, principally a tendency to generate Ablack
boxB models which are difficult to interpret, choosing the
best model from a number of potentials and selection of
compounds for training and test sets. In our experience,
the latter represents the major difficulty and expert knowl-
edge seems to be invaluable at this stage of model genera-
tion.

5 Application of ADMET Predictions

Whilst the development of descriptors and modelling tech-
niques has increased our ability to develop models for in-
dividual ADMET properties, there has been a shift in fo-
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cus with respect to the application of these models. A large
proportion of drug discovery project teams now have ac-
cess to ADMET models in some form, either through in-
house computational teams or using third party software.
However, with the availability of technology capable of
generating numbers as fast as computers can process the
mathematics, comes the problem of analysis.
Popular software packages have been available since

many yearsB which enable the user to AanalyseB large sets
of data. Multi-dimensional datasets can be displayed on 2-
D or 3-D charts with additional dimensions made available
using colours, shapes, sizes, etc. Although these make for
excellent data representations in presentations and re-
ports, there still remains the question as to whether these
have truly allowed a rigorous analysis of the data. Ulti-
mately, what the user is looking to achieve is the ability to
make decisions on the basis of the properties they have
predicted and measured. Even better, the user would hope
to be able to gain some measure of confidence around any
decision they make.
Traditionally, the major stumbling block for those advo-

cating the use of in silico models has been the accuracy of
the prediction. By definition, a model is only an estimation
of an unknown value on the basis of previously collected
knowledge, yet often it will be evaluated and criticised for
not exactly predicting a value for a single molecule. Per-
haps, what is often forgotten is that all the technology used
in the drug development process, be it in silico, in vitro or
in vivo, has some degree of uncertainty around it. Deci-
sions have been made on the basis of in vivo and in vitro
data for many years now, despite the known experimental
error and in some cases poor correlation between the ex-
perimental system and human in vivo properties. With this
in mind, is there any reason to believe in silico predictions
cannot be used equally well for decision making? Howev-
er, the problem still remains to be one of multi-dimension-
al optimisation in which there are varying levels of uncer-
tainty around different data sources and differences in the
relative importance of each property.
With the gradual acceptance of in silico technology, the

requirement for an ability to analyse data using a new set
of skills has arisen. The same people who might originally
have been looking at analysing the results of a single in
vivo study are now being asked to analyse and make deci-
sions about datasets containing thousands of datapoints,
all with varying levels of uncertainty and relevance.
In terms of a conceptual model for applying in silico

technology, a very simple model exists which uses in silico
technology alongside in vitro and in vivo techniques (Fig-
ure 1). The underlying premise is that at the start of a drug
discovery project there is an understanding of the techni-
ques available and the relevance of the data generated by
each. There must also be known measures for the uncer-
tainties around the data generated by different techniques.
The first phase of the project can be purely theoretical, a
process of molecule design using only in silico techniques.

An appropriate subset of all the molecules initially consid-
ered can then be synthesised and evaluated against a num-
ber of appropriate screens, such as potency. Assuming
there are AhitsB at this stage, a further subset of molecules
could be progressed for further in vitro and then finally in
vivo screening. At every stage two processes must take
place. Firstly, a selection process involving multi-dimen-
sional optimisation which takes into account uncertainties
and relevance; this yields the subset of molecules for pro-
gression. One example of a method that could be em-
ployed to perform the multi-dimensional optimisation
would be probabilistic scoring [1], however, what is impor-
tant is that the same, rigorous and comprehensive method
is used during each selection process. Secondly, and equal-
ly important, a feedback loop of all data is generated into
the in silico process, either for model evolution or for mod-
el generation. The feedback loop guarantees that at any
stage, if there is a need for further molecule design, then
everything already known about those molecules already
tested is taken into consideration. Clearly such a process is
difficult to introduce once a project is in progress, yet this
is almost always the way in silico technology gets intro-
duced in drug discovery.
As in silico technology creeps into the drug discovery

process, it is often viewed as something Anice to haveB, that
can be used alongside the existing technologies and con-
tribute to decision making when there are no other alter-
natives. It is clear to see that in order to implement a drug
discovery process that fully integrates in silico technology,
such as that described in the conceptual model, there can
be no half-way house. Without implementing a process in
which in silico technology is used from the very beginning,
it will never be possible to realise all the benefits and in-
sights that such technology is capable of delivering. In-
deed, it could be argued that without the in silico technolo-
gy contributing to the decision making process it is likely
that maximum benefit is not being derived from the in vi-
tro and in vivo technologies either. This, therefore, pres-
ents what is probably the greatest barrier to be overcome
by in silico technology if it is to become established in the
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Figure 1. Conceptual model for application of in silico technol-
ogy within the drug discovery process. See text for discussion.
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drug discovery process; namely that the drug discovery
process must evolve to get the maximum value from it.
Unfortunately, the pharmaceutical industry has too often
experienced false promises that a change to the process
may result in saving time and money, whether through ap-
plying scientific, technological or organisational changes.
It is likely that in silico technology may need to become
accepted as an adjunct to the current process in the short-
term. Only then can the underlying architecture of the
whole process be gradually transformed. This process will
only work if it can be done without demanding wholesale
change at any one time.
This presents an interesting challenge for those advo-

cates and developers of in silico technology. Many lessons
have been learned from the difficulty of introducing in sili-
co technology that attempts to replace an older technolo-
gy, such as using a computer model instead of an in vitro
screen. Despite potential time and cost benefits, there has
always been a lengthy process of convincing users of the
old technology to take the chance and adopt whatBs new.
However, there are many opportunities for in silico tech-
nology to be developed in less contentious fields. An ex-

ample of this is decision making – this is something that
has always taken place but with no one AcorrectB approach.
A consistent and rigorous framework for decision support
can be of benefit to professionals at all levels in the hierar-
chy and it is arguable that there is not yet any existing
technology to be replaced. One example of such an ap-
proach is illustrated in Figure 2 where multi-dimensional
optimisation can be performed in a probabilistic scoring
framework and used alongside chemical space and com-
pound selection algorithms to allow prioritisation. By pro-
viding the means to get the best out of technologies that
are already in place, it is much easier to help the drug dis-
covery process evolve.

6 Conclusions

This review has described recent developments in the field
of ADMET property predictions by QSAR models. It is
clear that there have been developments in the technology
for building predictive models, particularly in the sophisti-
cation of statistical modelling techniques and availability
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Figure 2. Admensa InteractiveTM, an example of an intuitive desktop interface providing in silico models within a decision support
framework to support drug discovery projects.
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of large datasets in Abig pharmaB. However, it is equally ap-
parent that in order to obtain the full value from these, fur-
ther developments will be necessary in the descriptors
used to characterise molecules as inputs to predictive mod-
els and in the availability of data in the public domain.
Furthermore, the demand to generate and update models
more quickly, whenever new experimental data is avail-
able, poses an additional challenge in automating all as-
pects of the model generation process.
Probably the biggest challenge facing the field is the in-

tegration of in silico ADMET predictions into the drug
discovery process. For this to occur, approaches supporting
decision-making based on the simultaneous optimisation
of multiple parameters in the face of experimental and
statistical uncertainty must be made available to the key
decision-makers in drug discovery projects. In silico pre-
dictions, no matter how accurate, have no value unless
they are used to make decisions regarding the direction of
a project.
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