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Abstract

ADMET models, whetheim silico or in vitro, are commonly used to ‘profile’
molecules, to identify potential liabilities ortBr out molecules expected to have
undesirable properties. While useful, this is trestrbasic application of such models.

We will demonstrate how models may be used to ggdhd profiling’ to guide key
decisions in drug discovery. For example, seleatifochemical series to focus
resources with confidence or design of improvedenales targeting structural
modifications to improve key properties.

To prioritise molecules and chemical series, theesss criteria for properties and
their relative importance to a project’s objectmast be defined. Data from models
(experimental or predicted) may then be used tesassach molecule’s balance of
properties against those requirements. Howeveandar to make decisions with
confidence, the uncertainties in all of the datanalso be considered.

In silico models encode information regarding the relatignbbetween molecular
structure and properties. This is used to pretieftroperty value of a novel
molecule. However, further interpretation can yieltormation on the contributions
of different groups in a molecule to the propeny ¢éhe sensitivity of the property to
structural changes. Visualising this information gaiide the redesign process.

In this paper we describe methods to achieve theaks and drive drug discovery
decisions and illustrate the results with practeamples.
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I ntroduction

The enormous cost of pharmaceutical R&D is drivethe high failure rate of
molecules from the earliest phases, where thousaindslecules may be synthesized
and screened in a single project, through to thst@xpensive clinical phases, where
the success rate remains less than one in tefj&]reasons for these failures are
numerous; however it is now widely accepted theti@essful drug must satisfy a
wide range of criteria, including absorption, distition, metabolism and elimination
(ADME), physicochemical and safety properties,ddition to potency against its
therapeutic target.

To address this need, many approaches to measurprgdicting these properties in
early drug discovery have been developed [2,3]s&lalow data to be generated that
provide information about critical properties ong@a numbers of molecules.
However, this brings a new challenge: How to usedhta to guide decisions that
will enable resources to be quickly focussed onetules that are likely to succeed
downstream, thus improving the overall efficienéyhe R&D process. This
challenge, often described as ‘multi-dimensionainjsation’, is made even more
difficult by the fact that these data sources, Wwheh silico, in vitro, orinvivo, are

all models of the ultimate target system, a hunatrept. Furthermore, the data
generated often exhibit significant uncertainty ttustatistical errors in predictive
models or variability in experimental assays.

This paper will not focus on the methods for getiegadata in drug discovery, but on
approaches for using this data effectively, guidiey decisions regarding the
selection and design of molecules. Specificallywilelook at approaches for
identifying molecules likely to exhibit an approgie balance of properties to meet the
therapeutic objectives of a project and for ushgihformation captured bwn silico
models to guide the design of molecules with imprbproperties.

We will contrast these novel approaches with singefiling’ that is commonly
used to analyse the data for multiple propertregrofiling, the predicted or
measured properties of a chemical series or maeanal compared against the
project’s criteria for success, or target producfife. Profiling may be a useful tool
for spotting patterns in properties, such as cteisispasses’ or ‘failures’ against a
given criterion. However, there are some signifidanitations to the information that
simple profiling provides. For example, a ‘failuagjainst one criterion may be
critical, while another could be less importantite outcome of the project — it may
be appropriate to ‘trade off’ one property to agkia better outcome in another.

In the first section we will describe simple profg and illustrate some of its
strengths and weaknesses. Following this, we wglkcdbe an approach that goes
beyond this to provide a more comprehensive ingation of the data. Finally, we
will describe a novel method that gives additiangrpretation of a predictive model
to guide redesign of molecules to further refingrtiproperties. These will be
illustrated using practical examples from drug disry projects and we consider
some lessons learned regarding the applicationeskt techniques in the Conclusions
section.
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Profiling

Profiling a chemical series or molecule involves domparison of predicted or
measured values for a number of properties agprestletermined criteria that define
a desirable molecule. These criteria are oftenriest as a target product profile
(TPP) and are typically chosen based on experifeageprevious projects. The TPP
will vary from project to project, depending on tinerapeutic target, intended route
of administration and, potentially, commercial riegments such as differentiation
from competitor molecules. The TPP may changeagithject proceeds, usually (but
not always) imposing more strict criteria duringelgphases.

An example of a simple TPP for predicted ADME pmjes is shown in the first two
columns of the table in Figure 1, in this caseglesi to identify appropriate
molecules for an orally dosed molecule againstra@NS (peripheral) target. This is
representative of a typical TPP for a hit-to-leagigct, where potent hit molecules
have been identified, but no furthervitro orin vivo data have been generated.

Property Desired Yalue Importance
W logs o1 —
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M P-gp category o _::I
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W 209 pKi £ 6 -
206 affinity category [ rredionm -::I
B hERG pICs0 £ 5 [} ———!
EBE logi[brain]:[blood]) £ -0.5 [ ——
B BBE category - [ —

Figure 1 Example of a simple scoring profile for a range of predicted ADME properties, chosen
to identify compounds suitable for an orally dosed compound for a CNStarget. Thefirst two
columnsrepresent a target product profile (TPP), but a scoring profile requires additional

infor mation on therelativeimportance of the criteria, asrepresented by the length of thered bar
in the third column.

Profiles for chemical series are conveniently viigega by plotting a histogram in
which each bar represents the percentage of mekeauthe chemical series that
meet a criterion for a single property. Exampletheke are shown in the top row of
Figure 2. When examining properties on a molecytenblecule basis, ‘traffic lights’
that colour code properties according to whethey fass (green) or fail (red) the
corresponding criterion or are close to the catetbooundary (yellow-orange) are
often used. While visually appealing, this viewidiyp becomes very complicated
when dealing with large numbers of properties &rah ideal (all green) molecule is
not present, it is difficult to select moleculesually; for example is it better to have
one red property value or three yellow?

In order to compare the results of simple profiligh scoring methods described
below, we will use an example of a hit-to-lead pobj in which a diversity-based
screen yielded hits from multiple chemotypes, oays. The challenge for this project
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team was to select a smaller number of chemigtriesder to focus the use of their
limited synthetic and experimental resources.

The histograms in the top row of Figure 2 showrsailts of a simple profile, using
the TPP in Figure 1, for the molecules in threaysyrlabelled A, B and C. From this
analysis it is immediately clear that all of thelewules in array C fail to meet the
criteria for five properties; solubility, logP, glama-protein binding, CYP2C9 affinity
and hERG inhibition. This indicates that the cheris array C is high-risk and the
likelihood of designing a molecule that would owere all five liabilities is low.
However, comparing the profiles for arrays A andrBvides less information. Both
arrays show a similar rate of ‘failures’ but these distributed across different
properties. Are the ‘failures’ in array A more,less, serious than those in array B?
Furthermore, is either chemistry likely to yield lexules that will pass all of the
criteria simultaneously?
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Figure 2 Profiles and scoring plots comparing three chemical arrays, A, B and C. The histograms
in the top row indicate the per centage of compounds meeting the criterion for each predicted
ADMET property asdefined by the TPP in Figure 1. The colours of the bars correspond to the
key in Figure 1. The second row shows scoring plotsfor the same arrays (as described in greater
detail in Figure 3). Qualitatively, the greater area under the plot above for Array B indicatesa
higher likelihood of identifying high quality compoundsin thischemical series.
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Beyond Profiling - Probabilistic Scoring

A more comprehensive alternative to profiling iggemerate a score that reflects the
overall quality of each molecule based on the abé#l data and their relative
importance within the TPP. The methods underlyimggrobabilistic scoring
employed herein are discussed in more detail ilb{dhere will give a brief
overview.

A probabilistic score is one which indicates thelyability of success of a molecule
against some criteria (e.g. a TPP). To score mtdsdar a TPP, a scoring profile
must be defined, similar to a TPP described abdwegever, in addition to each
criterion in the TPP, it is also important to sgtheir relative importance, as in
practice it is often necessary to make a traddeiffveen properties if an ideal
molecule cannot be identified. This is illustratedhe third column of Figure 1 for
the TPP shown. Furthermore, more subtle tradeeaifisbe defined than simple
pass/fail criteria, as a scoring profile could @amtmore complex functions for each
property representing a range of acceptability therproperty value range.

When combining data on multiple properties, itiamportant to consider the
uncertainty in each data point, as this could teatie overall uncertainty in the
scores being high, reducing our ability to confitjedistinguish high and low quality
molecules.

The result of this process is a score for each catde representing the likelihood of a
molecule meeting the scoring criteria and an uagadst in the overall score, derived
from the uncertainties in each of the individualgerty values. These uncertainties
can be used to establish whether the availableallata molecules to be confidently
distinguished, i.e. when one molecule can be centig chosen over another. An
illustration of the output for a small set of malés is shown in Figure 3.
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Figure 3 1n thisgraph, moleculesare plotted along the x-axisin rank order. The scoreisplotted
on the y-axis, with error barsindicating the overall uncertainty in the score. Here thetop 5
compounds cannot be confidently distinguished; more data or further criteriaarerequired to
choose between these. However, ~50% of compounds ar e significantly lesslikely to meet the
project criteria than thetop 5.
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Scoring the arrays illustrated in Figure 2 providegificant additional information,

as shown by scoring plots in the bottom row of flgare. It remains easy to see that
array C corresponds to high risk chemistry, thencha of success of these molecules
are very small and there is a high degree of cenfid in this assessment. However,
there is now a clear difference between arraysdBnt can be clearly seen that
there are a number of molecules that have a highaeghof success, i.e. of meeting the
scoring criteria. Conversely, the overall chandesuacess of the best molecules in
array A are significantly lower. Therefore, one camclude that the majority of
resources can confidently be focussed on arrayug.tD the statistical uncertainties

in the scores, it may also be valuable to expesmhall effort on the highest scoring
molecules in array A to confirm this conclusion.

Based on this analysis, the molecules from hiesds were selected for resynthesis
and experimental study. A rangeinfvitro ADME properties were measured for
these molecules which were re-scored based onllgesnin vitro properties. The
results confirmed the predicted hypothesis andhatbefforts to be further focused
and rapid progress to be made.

Guiding Redesign - Glowing Molecule

As illustrated above, predictive models may be \edfgctive for selecting molecules
or chemical series when used in an appropriatedvark. However, when looking in
detail at smaller numbers of molecules a commdictiam is that models give no
indication as to why a molecule is predicted toehacertain property value, or how a
molecule may be improved. Models encode relatimsshetween molecular
structure and properties, but interpreting andalising this information to design
better molecules has been almost impossible. Stpaiticularly true of models built
with modern ‘machine learning’ techniques suchréfi@al neural networks [5],
Gaussian processes [6,7] or support-vector mac@hefhe models that these
techniques create have commonly been describdaaak ‘box.’

The Glowing Molecule method analyses the mathemlatdationships captured by
predictive models to create an intuitive visual@mabf the impact of structural
features of a molecule on a predicted property. dutput of the analysis is a
coloured field on which the 2D molecular structissuperimposed which clearly
identifies ‘problem’ regions on a molecule and Hhiigjts functional groups that tend
to improve a predicted molecular property. Thi®iniation provides a guide to the
changes that are most likely to result in a mokeeuth improved properties.

The underlying method is based on consideratianmdictive model as a
mathematical function that relates a set of degmspx,x2,X3...) that characterise a
molecule to a value of the property being modefligdCommon descriptors include;
simple 1D descriptors (e.g. molecular weight omatmunts), 2D descriptors (e.g.
molecular fragments or topological polar-surfaceagr3D descriptors that capture
information about the shape of a molecule, and ednoblecule properties such as
logP. The mathematical function f(x,,xs...) that correlates with the predicted
property is typically fitted to a data set of malkxs with known property values,
using a statistical or ‘machine learning’ technique

The mathematical function f(x2,Xs...) can be considered to define a hypersurface in
the space of descriptors. In the simplest, lineaecf(x,X2,Xs...)=C1X1+CXo+CaX3. ..,
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this is simply a plane. However, for non-linear ralsdsuch as those created using
more advanced techniques, this hypersurface caut attire complex forms. The act
of making a prediction for a molecule can be repmésd as finding the *height’ (y) of
this hypersurface for a given set of coordinates«xs...). However, the ‘shape’ of
this surface contains additional information, imtigallar the descriptors that
contribute most to variation in the property value.

It is notable that these trends are constant fimear model; they do not depend on
the particular molecule for which the predictiorb&ng made. This reflects the
relatively straightforward interpretation of lineaodels, where the influence of
descriptors is simply related to the magnitude sigd of the coefficients in the
equation (gC,Cs...) [9]. However, the trends may vary significarigtween
molecules for non-linear forms of f.

If the contributions of each atom in a molecule&ch descriptor can also be
guantified, this enables the contributions of eaidim to the overall trend in the
molecule’s property to be calculated. This is nezstily achieved for 1D and 2D
descriptors, but may be generalised to more conmegriptors.

In order to illustrate the application of GlowingoMcule, we will use an example
from the public domain, in order to avoid issuesaffidentiality regarding molecule
structures. Rowley et al. [10] investigated a seoiktryptamines with very high
affinity and selectivity for the h5-HT2A receptdiheir main issue was to reduce
affinity for the hERG IKr channel, measured by tksement of 4 nM [3H]-dofetilide
binding to HEK cells stably expressing the hERGnrieh

We have applied the Glowing Molecule analysis te fieries, using the QSAR model
of hERG pIC50 available within the StarDrop™ softevpackage. As this model is
based on ‘gold standard’ patch-clamp measurememrtgxpect only qualitative
agreement with the dofetilide displacement reseit®rted. Despite this, Figure 4
demonstrates that the resulting visualisation plesigood guidance on structural
modifications.

Indole Series
IKr pKi: 7.1 IKr pK;: 6.3 IKr pK;: 5.0
Predicted hERG pICsy: 7.0 Predicted hERG pICsy: 6.6 Predicted hERG pICs: 6.0

This figure suggests that the Removal of this group has the
piperidine moiety is the largest

J’@ Changing from para- to meta- N
7 substituted piperidine reduced anticipated effect.
- hERG inhibition. The figure
hERG affinity. o\ indicates that removal of a benzyl

contributor to the high observed
group would further reduce hERG
affinity.

6-F Indole Series

IKr pK;: 6.03

Predicted hERG pICs: 5.9
The benzamide Nitrogen appears
to be the major issue for this
compound.

IKr pK;: 5.8

Predicted hERG pICsy: 5.6
Replacing the substituent with a
fluoro-benzene reduced the hERG
affinity, but the replacement
group still appears to contribute to
the high hERG affinity.

W
&
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IKr pK;: 5.27
Predicted hERG pICso: 5.3
Substitution with cyclohexyl,
which shows up as ‘neutral,”
further reduces hERG affinity. A
uniform green ‘glow’ suggests that
small changes are unlikely to have

a significant further effect on the
hFRG affinity

Figure 4 Examples of the Glowing M olecule visualisation of hERG inhibition for two series of
hERG inhibitorsfrom [9]. The pKi for hERG channel inhibition, as measured by displacement of
4 nM [3H]-dofetilide binding to HEK cells, and the predictions from a model of hERG pIC50 are
shown for comparison.
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If a predictive model does not yet exist for a @y, it is first necessary to build an
in silico model based on experimental data in order tohes&towing Molecule. For
example, the experimental results from moleculeshgsised early in the project may
be used. This modelling step captures the relatipeetween chemical structure
and property value that is used to generate thevi@tpMolecule. With the advent of
robust, automatic modelling techniques it is noglennecessary to have extensive
computational chemistry experience to generatia arico model for use in this way
[11].

Conclusion

In this paper we have discussed howilico andin vitro ADME data may be used,
along with other relevant properties, to guide sieais in the selection and design of
high quality molecules with a high likelihood ofcaess.

The key to this process is to use all of the abéslaata, experimental and predicted,
to identify those molecules that achieve the bakrte of properties for the project’s
objectives. We have presented a framework thatlesalse property requirements to
be clearly defined and applied to prioritise moleswand chemical series. This
explicitly takes into account the uncertainty ie tmderlying data to provide an
objective assessment of the decisions that thestg@iaorts, enabling resources to be
focused with confidence.

When ideal properties cannot be found in existirmgeculesjn silico models may be
used to guide the design of chemical modificationsreate a novel molecule with
improved properties. The Glowing Molecule methodalibed herein uses the
information captured when building a model to hight regions of a molecule that
have a strong influence on the property, guidingligieal chemists to focus efforts
on the chemistry that is most likely to producaraproved molecule.

In order to get the most out of these technologies essential that they be directly
accessible to the key decision-makers, who arellyguraject scientists. This allows
the impact of decisions or new ideas to be exploreactively; with the high pace
of modern drug discovery, delays while waiting &specialist to analyse potential
options often means that a decision is taken bef@eesults arrive. As most project
scientists are not computational specialists, actethese algorithms must be via an
intuitive interface to reduce the barrier to thgitake and maximise their effective
use.
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