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Abstract 
ADMET models, whether in silico or in vitro, are commonly used to ‘profile’ 
molecules, to identify potential liabilities or filter out molecules expected to have 
undesirable properties. While useful, this is the most basic application of such models. 

We will demonstrate how models may be used to go ‘beyond profiling’ to guide key 
decisions in drug discovery. For example, selection of chemical series to focus 
resources with confidence or design of improved molecules targeting structural 
modifications to improve key properties. 

To prioritise molecules and chemical series, the success criteria for properties and 
their relative importance to a project’s objective must be defined. Data from models 
(experimental or predicted) may then be used to assess each molecule’s balance of 
properties against those requirements. However, in order to make decisions with 
confidence, the uncertainties in all of the data must also be considered. 

In silico models encode information regarding the relationship between molecular 
structure and properties. This is used to predict the property value of a novel 
molecule. However, further interpretation can yield information on the contributions 
of different groups in a molecule to the property and the sensitivity of the property to 
structural changes. Visualising this information can guide the redesign process. 

In this paper we describe methods to achieve these goals and drive drug discovery 
decisions and illustrate the results with practical examples. 
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Introduction 
The enormous cost of pharmaceutical R&D is driven by the high failure rate of 
molecules from the earliest phases, where thousands of molecules may be synthesized 
and screened in a single project, through to the most expensive clinical phases, where 
the success rate remains less than one in ten [1]. The reasons for these failures are 
numerous; however it is now widely accepted that a successful drug must satisfy a 
wide range of criteria, including absorption, distribution, metabolism and elimination 
(ADME), physicochemical and safety properties, in addition to potency against its 
therapeutic target. 
 
To address this need, many approaches to measuring or predicting these properties in 
early drug discovery have been developed [2,3]. These allow data to be generated that 
provide information about critical properties on large numbers of molecules. 
However, this brings a new challenge: How to use this data to guide decisions that 
will enable resources to be quickly focussed on molecules that are likely to succeed 
downstream, thus improving the overall efficiency of the R&D process. This 
challenge, often described as ‘multi-dimensional optimisation’, is made even more 
difficult by the fact that these data sources, whether in silico, in vitro, or in vivo, are 
all models of the ultimate target system, a human patient. Furthermore, the data 
generated often exhibit significant uncertainty due to statistical errors in predictive 
models or variability in experimental assays. 
 
This paper will not focus on the methods for generating data in drug discovery, but on 
approaches for using this data effectively, guiding key decisions regarding the 
selection and design of molecules. Specifically, we will look at approaches for 
identifying molecules likely to exhibit an appropriate balance of properties to meet the 
therapeutic objectives of a project and for using the information captured by in silico 
models to guide the design of molecules with improved properties. 
 
We will contrast these novel approaches with simple ‘profiling’ that is commonly 
used to analyse the data for multiple properties. In profiling, the predicted or 
measured properties of a chemical series or molecule are compared against the 
project’s criteria for success, or target product profile. Profiling may be a useful tool 
for spotting patterns in properties, such as consistent ‘passes’ or ‘failures’ against a 
given criterion. However, there are some significant limitations to the information that 
simple profiling provides. For example, a ‘failure’ against one criterion may be 
critical, while another could be less important to the outcome of the project – it may 
be appropriate to ‘trade off’ one property to achieve a better outcome in another. 
 
In the first section we will describe simple profiling and illustrate some of its 
strengths and weaknesses. Following this, we will describe an approach that goes 
beyond this to provide a more comprehensive interpretation of the data. Finally, we 
will describe a novel method that gives additional interpretation of a predictive model 
to guide redesign of molecules to further refine their properties. These will be 
illustrated using practical examples from drug discovery projects and we consider 
some lessons learned regarding the application of these techniques in the Conclusions 
section. 
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Profiling 
Profiling a chemical series or molecule involves the comparison of predicted or 
measured values for a number of properties against pre-determined criteria that define 
a desirable molecule. These criteria are often described as a target product profile 
(TPP) and are typically chosen based on experience from previous projects. The TPP 
will vary from project to project, depending on the therapeutic target, intended route 
of administration and, potentially, commercial requirements such as differentiation 
from competitor molecules. The TPP may change as the project proceeds, usually (but 
not always) imposing more strict criteria during later phases. 
 
An example of a simple TPP for predicted ADME properties is shown in the first two 
columns of the table in Figure 1, in this case designed to identify appropriate 
molecules for an orally dosed molecule against a non-CNS (peripheral) target. This is 
representative of a typical TPP for a hit-to-lead project, where potent hit molecules 
have been identified, but no further in vitro or in vivo data have been generated.  
 

 
Figure 1 Example of a simple scoring profile for a range of predicted ADME properties, chosen 
to identify compounds suitable for an orally dosed compound for a CNS target. The first two 
columns represent a target product profile (TPP), but a scoring profile requires additional 
information on the relative importance of the criteria, as represented by the length of the red bar 
in the third column. 
 
Profiles for chemical series are conveniently visualized by plotting a histogram in 
which each bar represents the percentage of molecules in the chemical series that 
meet a criterion for a single property. Examples of these are shown in the top row of 
Figure 2. When examining properties on a molecule-by-molecule basis, ‘traffic lights’ 
that colour code properties according to whether they pass (green) or fail (red) the 
corresponding criterion or are close to the criterion boundary (yellow-orange) are 
often used. While visually appealing, this view rapidly becomes very complicated 
when dealing with large numbers of properties and, if an ideal (all green) molecule is 
not present, it is difficult to select molecules visually; for example is it better to have 
one red property value or three yellow? 
 
In order to compare the results of simple profiling with scoring methods described 
below, we will use an example of a hit-to-lead project, in which a diversity-based 
screen yielded hits from multiple chemotypes, or arrays. The challenge for this project 
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team was to select a smaller number of chemistries in order to focus the use of their 
limited synthetic and experimental resources. 
 
The histograms in the top row of Figure 2 show the results of a simple profile, using 
the TPP in Figure 1, for the molecules in three arrays, labelled A, B and C. From this 
analysis it is immediately clear that all of the molecules in array C fail to meet the 
criteria for five properties; solubility, logP, plasma-protein binding, CYP2C9 affinity 
and hERG inhibition. This indicates that the chemistry in array C is high-risk and the 
likelihood of designing a molecule that would overcome all five liabilities is low. 
However, comparing the profiles for arrays A and B provides less information. Both 
arrays show a similar rate of ‘failures’ but these are distributed across different 
properties. Are the ‘failures’ in array A more, or less, serious than those in array B? 
Furthermore, is either chemistry likely to yield molecules that will pass all of the 
criteria simultaneously? 
 

Array A Array B Array C 
   

   

   
Figure 2 Profiles and scoring plots comparing three chemical arrays, A, B and C. The histograms 
in the top row indicate the percentage of compounds meeting the criterion for each predicted 
ADMET property as defined by the TPP in Figure 1. The colours of the bars correspond to the 
key in Figure 1. The second row shows scoring plots for the same arrays (as described in greater 
detail in Figure 3). Qualitatively, the greater area under the plot above for Array B indicates a 
higher likelihood of identifying high quality compounds in this chemical series. 
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Beyond Profiling - Probabilistic Scoring 
A more comprehensive alternative to profiling is to generate a score that reflects the 
overall quality of each molecule based on the available data and their relative 
importance within the TPP. The methods underlying the probabilistic scoring 
employed herein are discussed in more detail in [4] but here will give a brief 
overview. 
 
A probabilistic score is one which indicates the probability of success of a molecule 
against some criteria (e.g. a TPP). To score molecules for a TPP, a scoring profile 
must be defined, similar to a TPP described above. However, in addition to each 
criterion in the TPP, it is also important to specify their relative importance, as in 
practice it is often necessary to make a trade-off between properties if an ideal 
molecule cannot be identified. This is illustrated in the third column of Figure 1 for 
the TPP shown. Furthermore, more subtle trade-offs can be defined than simple 
pass/fail criteria, as a scoring profile could contain more complex functions for each 
property representing a range of acceptability over the property value range. 
 
When combining data on multiple properties, it is also important to consider the 
uncertainty in each data point, as this could lead to the overall uncertainty in the 
scores being high, reducing our ability to confidently distinguish high and low quality 
molecules. 
 
The result of this process is a score for each molecule, representing the likelihood of a 
molecule meeting the scoring criteria and an uncertainty in the overall score, derived 
from the uncertainties in each of the individual property values. These uncertainties 
can be used to establish whether the available data allow molecules to be confidently 
distinguished, i.e. when one molecule can be confidently chosen over another. An 
illustration of the output for a small set of molecules is shown in Figure 3. 
 

 
Figure 3 In this graph, molecules are plotted along the x-axis in rank order. The score is plotted 
on the y-axis, with error bars indicating the overall uncertainty in the score. Here the top 5 
compounds cannot be confidently distinguished; more data or further criteria are required to 
choose between these. However, ~50% of compounds are significantly less likely to meet the 
project criteria than the top 5. 
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Scoring the arrays illustrated in Figure 2 provides significant additional information, 
as shown by scoring plots in the bottom row of this figure. It remains easy to see that 
array C corresponds to high risk chemistry, the chances of success of these molecules 
are very small and there is a high degree of confidence in this assessment. However, 
there is now a clear difference between arrays A and B. It can be clearly seen that 
there are a number of molecules that have a high chance of success, i.e. of meeting the 
scoring criteria. Conversely, the overall chances of success of the best molecules in 
array A are significantly lower. Therefore, one can conclude that the majority of 
resources can confidently be focussed on array B. Due to the statistical uncertainties 
in the scores, it may also be valuable to expend a small effort on the highest scoring 
molecules in array A to confirm this conclusion. 
 
Based on this analysis, the molecules from hit series B were selected for resynthesis 
and experimental study. A range of in vitro ADME properties were measured for 
these molecules which were re-scored based only on their in vitro properties. The 
results confirmed the predicted hypothesis and allowed efforts to be further focused 
and rapid progress to be made. 

Guiding Redesign - Glowing Molecule 
As illustrated above, predictive models may be very effective for selecting molecules 
or chemical series when used in an appropriate framework. However, when looking in 
detail at smaller numbers of molecules a common criticism is that models give no 
indication as to why a molecule is predicted to have a certain property value, or how a 
molecule may be improved.  Models encode relationships between molecular 
structure and properties, but interpreting and visualising this information to design 
better molecules has been almost impossible. This is particularly true of models built 
with modern ‘machine learning’ techniques such as artificial neural networks [5], 
Gaussian processes [6,7] or support-vector machines [8]. The models that these 
techniques create have commonly been described as ‘black box.’ 
 
The Glowing Molecule method analyses the mathematical relationships captured by 
predictive models to create an intuitive visualisation of the impact of structural 
features of a molecule on a predicted property. The output of the analysis is a 
coloured field on which the 2D molecular structure is superimposed which clearly 
identifies ‘problem’ regions on a molecule and highlights functional groups that tend 
to improve a predicted molecular property. This information provides a guide to the 
changes that are most likely to result in a molecule with improved properties. 
 
The underlying method is based on consideration of a predictive model as a 
mathematical function that relates a set of descriptors (x1,x2,x3…) that characterise a 
molecule to a value of the property being modelled (y). Common descriptors include; 
simple 1D descriptors (e.g. molecular weight or atom counts), 2D descriptors (e.g. 
molecular fragments or topological polar-surface area), 3D descriptors that capture 
information about the shape of a molecule, and whole-molecule properties such as 
logP. The mathematical function f(x1,x2,x3…) that correlates with the predicted 
property is typically fitted to a data set of molecules with known property values, 
using a statistical or ‘machine learning’ technique. 
 
The mathematical function f(x1,x2,x3…) can be considered to define a hypersurface in 
the space of descriptors. In the simplest, linear case, f(x1,x2,x3…)=c1x1+c2x2+c3x3…, 
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this is simply a plane. However, for non-linear models such as those created using 
more advanced techniques, this hypersurface can adopt more complex forms. The act 
of making a prediction for a molecule can be represented as finding the ‘height’ (y) of 
this hypersurface for a given set of coordinates (x1,x2,x3…). However, the ‘shape’ of 
this surface contains additional information, in particular the descriptors that 
contribute most to variation in the property value. 
 
It is notable that these trends are constant for a linear model; they do not depend on 
the particular molecule for which the prediction is being made. This reflects the 
relatively straightforward interpretation of linear models, where the influence of 
descriptors is simply related to the magnitude and sign of the coefficients in the 
equation (c1,c2,c3…) [9]. However, the trends may vary significantly between 
molecules for non-linear forms of f. 
 
If the contributions of each atom in a molecule to each descriptor can also be 
quantified, this enables the contributions of each atom to the overall trend in the 
molecule’s property to be calculated. This is most easily achieved for 1D and 2D 
descriptors, but may be generalised to more complex descriptors. 
 
In order to illustrate the application of Glowing Molecule, we will use an example 
from the public domain, in order to avoid issues of confidentiality regarding molecule 
structures. Rowley et al. [10] investigated a series of tryptamines with very high 
affinity and selectivity for the h5-HT2A receptor. Their main issue was to reduce 
affinity for the hERG IKr channel, measured by displacement of 4 nM [3H]-dofetilide 
binding to HEK cells stably expressing the hERG channel. 
 
We have applied the Glowing Molecule analysis to this series, using the QSAR model 
of hERG pIC50 available within the StarDrop™ software package. As this model is 
based on ‘gold standard’ patch-clamp measurements, we expect only qualitative 
agreement with the dofetilide displacement results reported. Despite this, Figure 4 
demonstrates that the resulting visualisation provides good guidance on structural 
modifications. 
 
 

 
Figure 4 Examples of the Glowing Molecule visualisation of hERG inhibition for two series of 
hERG inhibitors from [9]. The pKi for hERG channel inhibition, as measured by displacement of 
4 nM [3H]-dofetilide binding to HEK cells, and the predictions from a model of hERG pIC50 are 
shown for comparison. 
 
 

IKr pKi: 6.03 
Predicted hERG pIC50: 5.9 
The benzamide Nitrogen appears 
to be the major issue for this 
compound. 

IKr pKi: 5.8 
Predicted hERG pIC50: 5.6 
Replacing the substituent with a 
fluoro-benzene reduced the hERG 
affinity, but the replacement 
group still appears to contribute to 
the high hERG affinity. 

IKr pKi: 5.27 
Predicted hERG pIC50: 5.3 
Substitution with cyclohexyl, 
which shows up as ‘neutral,’ 
further reduces hERG affinity. A 
uniform green ‘glow’ suggests that 
small changes are unlikely to have 
a significant further effect on the 
hERG affinity. 

6-F Indole Series 

IKr pKi: 7.1 

Predicted hERG pIC50: 7.0 
This figure suggests that the 
piperidine moiety is the largest 
contributor to the high observed 
hERG affinity. 

IKr pKi: 6.3 
Predicted hERG pIC50: 6.6 
Changing from para- to meta-
substituted piperidine reduced 
hERG inhibition. The figure 
indicates that removal of a benzyl 
group would further reduce hERG 
affinity.  

IKr pKi: 5.0 
Predicted hERG pIC50: 6.0 
Removal of this group has the 
anticipated effect. 

Indole Series 
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If a predictive model does not yet exist for a property, it is first necessary to build an 
in silico model based on experimental data in order to use the Glowing Molecule. For 
example, the experimental results from molecules synthesised early in the project may 
be used. This modelling step captures the relationships between chemical structure 
and property value that is used to generate the Glowing Molecule. With the advent of 
robust, automatic modelling techniques it is no-longer necessary to have extensive 
computational chemistry experience to generate an in silico model for use in this way 
[11]. 

Conclusion 
In this paper we have discussed how in silico and in vitro ADME data may be used, 
along with other relevant properties, to guide decisions in the selection and design of 
high quality molecules with a high likelihood of success. 
 
The key to this process is to use all of the available data, experimental and predicted, 
to identify those molecules that achieve the best balance of properties for the project’s 
objectives. We have presented a framework that enables the property requirements to 
be clearly defined and applied to prioritise molecules and chemical series. This 
explicitly takes into account the uncertainty in the underlying data to provide an 
objective assessment of the decisions that the data supports, enabling resources to be 
focused with confidence. 
 
When ideal properties cannot be found in existing molecules, in silico models may be 
used to guide the design of chemical modifications to create a novel molecule with 
improved properties. The Glowing Molecule method described herein uses the 
information captured when building a model to highlight regions of a molecule that 
have a strong influence on the property, guiding medicinal chemists to focus efforts 
on the chemistry that is most likely to produce an improved molecule. 
 
In order to get the most out of these technologies, it is essential that they be directly 
accessible to the key decision-makers, who are usually project scientists. This allows 
the impact of decisions or new ideas to be explored interactively; with the high pace 
of modern drug discovery, delays while waiting for a specialist to analyse potential 
options often means that a decision is taken before the results arrive. As most project 
scientists are not computational specialists, access to these algorithms must be via an 
intuitive interface to reduce the barrier to their uptake and maximise their effective 
use. 
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