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Abstract 
Prioritising compounds with a lower chance of causing toxicity, early in the drug discovery process, would help 
to address the high attrition rate in pharmaceutical R&D. Expert knowledge-based prediction of toxicity can 
alert chemists if their proposed compounds are likely to have an increased likelihood of causing toxicity. We 
will discuss how multi-parameter optimisation approaches can be used to balance the potential for toxicity 
with other properties required in a high quality candidate drug, giving appropriate weight to the alert in the 
selection of compounds. Furthermore, we will describe how information on the region of a compound that 
triggers a toxicity alert can be interactively visualised to guide the modification of a compound to reduce the 
likelihood of toxicity.  
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Introduction 
Toxicity of drugs and clinical candidates remains a significant issue for the pharmaceutical industry, leading to 
increased attrition and cost, late stage failures and market withdrawals. Recent data from CMR International 
[1] indicate that 22% of drug candidates entering clinical development in the period 2006 to 2010, failed due 
to non-clinical toxicology or clinical safety issues. In pre-clinical development, toxicity and safety issues 
accounted for 54% of failures (18% of all pre-clinical candidates). These expensive late-stage failures account 
for a large proportion of the cost of pharmaceutical R&D, recently estimated to be $1.8B per marketed drug 
[2]. 

For many marketed drugs, toxicity remains an issue, causing adverse drug reactions (ADRs) and leading to 
black box warnings, restrictions on use and even withdrawals. These dramatically reduce or even eliminate the 
return on R&D and marketing investments and harm the reputation of pharmaceutical companies and the 
industry as a whole. A study by Lasser et al. [3] indicates that, of 548 new chemical entities approved by the 
U.S. Food and Drug Administration between 1975 and 2000, 10.2% acquired one or more black box warnings 
and 2.9% were withdrawn. Recent, high profile examples of market withdrawals include Cerivastatin (2001), 
Valdecoxib (2005, U.S.) and Rosiglitazone (2010, Europe). Of particular concern are idiosyncratic ADRs which, 
due to their rare occurrence, are unlikely to be detected during clinical trials. 

From the sobering statistics above, it is clear that addressing failures due to toxicity would have a dramatic 
effect on the productivity of pharmaceutical R&D and the quality of the resulting drugs. Some toxicity is driven 
by the biological mechanism of the intended pharmacological action of a compound, particularly in the case of 
compounds intended for new targets for which the association with a therapeutic indication has not yet been 
validated. However, a significant proportion of observed toxicities are caused by unintended effects unrelated 
to the primary biological target. In the latter cases, it should be possible to reduce risk by focussing on 
structural motifs that are less likely to cause toxicity due to known mechanisms. Alternatively, if a likelihood of 
toxicity being observed in the clinic can be identified early in the process, in vitro or in vivo experiments can be 
prioritised to assess this risk before additional, downstream investments are made. 

In the mid-1990s, a similar observation was made of a high rate of failure due to poor compound 
pharmacokinetics (PK) in clinical trials [4]. This led to the introduction of in vitro assays for high-throughput 
measurement of absorption, distribution, metabolism and elimination (ADME) properties in early drug 
discovery [5] and development of computational, or in silico, methods for the estimation of these properties 
[6] [7]. The result has been a reduction in the proportion of clinical failures due to PK issues from an estimated 
39% in 1991 to approximately 10% in 2000 [8].  Unfortunately, in the same period, the overall failure rate was 
unchanged and the proportion of clinical failures attributed to toxicity or safety issues increased from 
approximately 14% to 30%. This, in turn has motivated a recent trend to develop and introduce in vitro assays 
earlier in the drug discovery process, to identify potentially toxic compounds and halt their progression. 
Similarly, in silico methods for the prediction of toxicity can help to guide the design and selection of 
compounds with reduced risk of toxicity. 

This article will focus on ‘knowledge-based’ methods for prediction of toxicity (also described as ‘rule-based’), 
that produce a semi-quantitative estimate of toxicity hazards, based on experimental precedence for similar 
compounds.  A number of expert systems have been developed that provide a rule-based approach to toxicity 
[9]. Other approaches, broadly described as ‘statistical’ methods, rely on fitting a mathematical model of 
compound characteristics to empirical data using a variety of techniques including Support Vector Machines, 
Naive Bayes, Decision trees, and Random Forest [10] [11] [12] [13] [14]. The output of both knowledge-based 
and statistical methods are classifications of compounds as toxic or otherwise or predictions of a numerical 
measure of toxicity, e.g. LD50. The principles that we discuss herein for the application of in silico methods to 
address toxicity in early drug discovery can apply equally to both approaches. 

In the following sections we will describe the principles of knowledge-based prediction of toxicity and the 
challenges posed by application in early drug discovery. We will discuss how these methods may be applied to 
the selection of compounds, giving appropriate weight to predictions of toxicity against other important 
factors, and provide feedback on strategies for redesign of drug candidates to reduce toxicity risk. Finally, we 
will present two applications of knowledge-based toxicity predictions – one of recently approved drugs and 
the other in the context of a hypothetical hit-to-lead project – before drawing some conclusions. 



 

 

Knowledge-based prediction of compound toxicity 
Expert knowledge-based predictive systems for small molecules are designed to emulate the decision-making 
process of a group of experts by applying a form of artificial intelligence whereby a knowledge base of facts is 
used to make a prediction by inferring relationships between facts through a process known as reasoning [15] 
[16].  This allows for the introduction of associated data such as reactivity or knowledge of the mechanism of 
action, and can cope with uncertainty and conflicting data which is common in the field of toxicity prediction.  
In contrast, purely statistical approaches derive probabilities of toxicity by taking a dataset of compounds, 
identifying descriptors that show a correlation to activity and use this to predict the toxicity of novel 
compounds.  Statistical systems have the advantage of being fast to implement and can more efficiently cope 
with large datasets when the endpoint is relatively simple.  Expert systems are particularly well suited to 
making predictions for toxicities derived through multiple mechanisms for which only incomplete datasets are 
available.  Expert systems can often provide more interpretable predictions with detailed supporting 
documentation [9] [17]. 

In silico systems in the field of toxicity typically predict hazard – the possibility of a chemical causing harm [18].  
Expert systems frequently also provide an indication of the likelihood for the prediction to be correct, 
supporting evidence, and a reasoned argument for the cause of the hazard which may include an expert 
analysis, a mechanistic explanation, or even an adverse outcome pathway (AOP) [19].  Whilst valuable, such 
predictions normally require further analysis to derive the risk – the probability of that toxicity being observed.  
A key part of that analysis is to determine the exposure of the chemical at the site of toxicity – a step that 
requires an understanding of the dosing regimen, the pharmacokinetics, and potentially relevant biological 
details such as species, age, disease state, sex and the potential for drug-drug interactions.  This means that a 
hazard prediction has to be considered in the context of a number of other factors in order to derive an 
assessment of risk. 

The Derek prediction engine (www.lhasalimited.org) [20] applied in the examples below, provides a prediction 
(active/inactive) for each toxicity endpoint. If no evidence of toxicity has been found, then ‘No report’ (nothing 
to report) is returned. A prediction of activity is typically associated with a structural alert, identifying the motif 
triggering the positive prediction, along with an associated likelihood.  The likelihood qualifies this prediction; 
some of the likelihoods relating to positive predictions are shown in Box 1.    In practise, it has been 
demonstrated that likelihood can be taken as a level of confidence since it correlates well with the accuracy of 
a prediction [21]. 

Table 1 Examples of the reasoning levels within Derek and their definitions 

certain the proposition (prediction) is known to be true 

probable there is at least one strong argument for the proposition and none against it 

plausible the weight of evidence supports the proposition 

equivocal There is an equal weight of evidence for and against the proposition 

 

Expert systems are frequently applied in the later stages of drug development [22] [23], where it may be 
necessary to produce an assessment of risk suitable for regulatory acceptance, or to design in vivo studies that 
should be undertaken to support a submission.  In such cases, features including mechanistic interpretation, 
expert commentary, documentation, performance statistics and supporting data are particularly valuable.  At 
this stage of the process, relatively few compounds are assessed for toxicity and the endpoints can be 
relatively complex, meaning that training sets for in silico models tend to be sparse and do not always 
sufficiently capture the different mechanistic pathways at work.  To overcome this, collaborative data sharing, 
through organisations such as Lhasa Limited, enables participating companies to gain knowledge of toxicities 
from proprietary data, without revealing confidential information such as biological targets or chemical 
structures. 
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In contrast, these methods have been less commonly applied in early drug discovery, where the numbers of 
compounds considered are much larger and the scientists using the predictions are less likely to be expert 
toxicologists. This makes detailed examination of each prediction, using detailed supporting information, 
impractical. In this scenario, toxicity predictions must be appropriately integrated into decision-making 
processes, to provide intuitive guidance on reducing toxicity risk and facilitate collaboration with expert 
toxicologists where expert guidance is required. 

Guiding Compound Design and Selection 
Balancing Toxicity with Other Factors 

A high quality drug must simultaneously satisfy many property requirements. Primary among these is 
achieving sufficient potency against the intended therapeutic target(s); however, to be both safe and 
efficacious a successful compound must also have appropriate ADME properties and, of course, avoid causing 
toxic effects at a therapeutic dose. Therefore, identifying high quality lead and candidate compounds is a 
delicate balancing act, often described as ‘multi-parameter optimisation’ (MPO) [24]. 

Predictions of toxicity hazards must be balanced against other properties and given appropriate weight in the 
selection and design of compounds in early drug discovery. As discussed above, knowledge-based methods for 
toxicity prediction indicate if a compound has an increased likelihood of toxicity, but a toxicity alert is not a 
guarantee that a compound will be toxic. Therefore, one would give priority to compounds with no indications 
of toxicity over those with an alert, all other factors being equal; however, an alert may not be a sufficient 
reason to ‘kill’ a compound that meets many other requirements. The cost of incorrectly rejecting a good 
compound based only upon an uncertain prediction may be high, particularly in the absence of alternative 
options or if methods to mitigate the risk (such as a change to the dosing regimen) have not been considered. 

Methods for MPO, such as Probabilistic Scoring [25], allow a project team to define a profile of property 
criteria that they require in an ideal compound. Furthermore, as illustrated in Figure 1Error! Reference source 
not found., each property criterion can be assigned an importance to reflect the impact of a property outcome 
on a compound’s chance of success. The results of predictions or experimental property measurements for 
each compound are then assessed against the profile to generate a score representing the compound’s 
likelihood of success, i.e. the probability of achieving an ideal property profile. This allows compounds with the 
best chance of downstream success to be effectively prioritised. Furthermore, the uncertainty in each property 
value, due to experimental variability or statistical errors in predictions, can be explicitly taken into account to 
estimate the uncertainty in the overall scores. This, in turn, makes it clear when compounds can be confidently 
distinguished, based on the available data, and avoids inappropriate rejection of compounds based on an 
uncertain prediction or measurement. 

 

Figure 1 Example scoring profiles defining the ideal criteria (labelled “desired value”) for a range of experimental and 
predicted properties and the importance of each individual criterion to the overall objective of the project, specifically 
an orally dosed compound intended for a peripheral target. (a) shows an example of a profile includes experimental 
potency against the target and predicted ADME properties. (b) illustrates a profile combining these properties with 
knowledge-based predictions of toxicity endpoints. Also shown in (b) is an expansion of the criterion for hepatotoxicity, 
demonstrating how the impacts of different predicted likelihoods for this toxicity on the chance of a compound’s 
success can be reflected by a ‘desirability function’ shown in blue. On this graph, the desirability of each outcome is 
shown by the blue line and the scale on the y-axis indicates the desirability on a scale of 0 to 1, where 1 indicates the 
ideal outcome. The histogram shows the distribution of the different predictions in the current data set. 



 

 

Figure 2 An example of an interactive designer in which the structural alert giving 
rise to the prediction of an increased chance of hepatotoxicity for Lumiracoxib is 
highlighted in red. Such an environment enables exploration of strategies to 
reduce toxicity risk while providing instant feedback on the predicted impact of 
structural changes on multiple, relevant properties. 

 

 

 

 

 

 

 

 

 

 

 

Guiding Compound Re-design 

An advantage of a knowledge-based approach to toxicity prediction is that the structural feature of a 
compound that is associated with an increased likelihood of toxicity is identified. This contrasts with many 
‘black box’ statistical methods that provide a prediction with no feedback regarding the underlying 
relationship to the compound structure. Highlighting this alert on the structure of the compound provides 
valuable information for medicinal chemists considering optimisation strategies. Coupled with predictive 
models of other properties and an MPO method in an interactive environment, this information can be used to 
guide the design of an alternative compound to reduce the risk of toxicity without having a negative effect on 
other required properties. Figure 2 shows an example of such an ‘interactive designer’. 

Analysis of Recent Drug Approvals 
In order to assess the potential value of applying knowledge-based toxicity prediction, all small molecule drugs 
approved in 2012 by the FDA Center for Drug Evaluation and Research

1
 were analysed against available 

endpoints in the Derek Nexus module for StarDrop (www.optibrium.com).  The structures of these compounds 
were obtained from PubChem or NCI and regulatory label information was obtained from the FDA and/or EMA 
to identify clinically observed toxicities together with relevant black-box warnings.  Three endpoints, skin 
sensitisation and irritation of the eye or skin were subsequently removed from the analysis since only one 
compound was topically administered hence predictions for these adverse events could not be validated.  It 
should however be noted that the single topically administered compound, Ingenol Mebutate, was correctly 
predicted as a skin sensitiser.  The predictions covered a range of important endpoints including 
hepatotoxicity, hERG channel inhibition, developmental toxicity, teratogenicity, chromosomal damage (in vitro 
and in vivo), mutagenicity in vitro and carcinogenicity.  All of the alerts returned were at the plausible level 
(meaning that the weight of evidence is for activity to be observed).  This full dataset is available as 
supplementary material.   Of the limited set of 24 compounds, 11 were correctly predicted clean, 6 were 
correctly predicted with toxicities, 5 were falsely predicted clean and 2 were falsely predicted to have toxicities 
that were not observed.  This is summarised in Figure 3(a).   For the dataset of 24 compounds across 8 
endpoints a total of 16 predictions of toxicity were made, showing a sensitivity of 55% and a specificity of 85%.  
The breakdown of those alerts is shown in Figure 3(b).  

Looking at the performance of individual alerts, three complex high-level endpoints were responsible for the 
majority of false predictions.  The first, hepatotoxicity is a challenging endpoint to predict since there are a 
large number of causes of liver toxicity, and many possible reasons why it may not be observed.  One 
compound, Aclidinium, was predicted to show hepatotoxicity but this is administered as a small inhaled dose 
making hepatotoxicity an unlikely event [26].  Two compounds (Bosutinib and Bedaquiline) were not predicted 
to show the observed hepatotoxicity but these were dosed at very high levels (>400mg daily), and in the latter 
case, toxicity was only shown when co-administered with other drugs which inhibit CYP3A4 (the major 
clearance route for Bedaquiline)

2
.  Large doses of hepatically cleared compounds increase the risk of liver 

                                                                 
1http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/DrugandBiologicApprovalRe
ports/UCM342733.pdf 
2 http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204384s002lbl.pdf 
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http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/DrugandBiologicApprovalReports/UCM342733.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204384s002lbl.pdf


 

 

toxicity through the saturation of processes or the build-up of metabolites [27].  Developmental toxicity 
currently has only a limited number of alerts in the Derek engine and in this dataset only 1 out of the 7 
observed instances was correctly predicted. Three of the ‘false negative’ compounds were kinase inhibitors 
which may indicate a lack of historical data from which to build good models since kinase inhibitors represent 
a relatively new class of drugs.  There is however, growing evidence of a relationship between kinase inhibition 
and chromosomal/developmental toxicity [28] which should support further development of this alert.  A third 
endpoint, teratogenicity, is incompletely understood, complex and driven by a complex array of pathways – for 
example, Lomitapide exhibited teratogenicity in rats and ferrets but not in rabbits.  Teriflunomide is believed 
to be teratogenic through its primary mechanism of action - inhibition of dihydroorotate dehydrogenase – an 
essential enzyme for nucleotide synthesis

3
. 

This analysis suggests that knowledge-based toxicity predictions can be an effective tool to identify potential 
toxicities before a compound reaches the clinic.  By flagging potential toxicities early in the drug development 
process, hazards can be assessed through early screening before significant investments have been made and 
by applying MPO analyses, these risks can be balanced against the potential benefits a drug may provide.  This 
is highlighted in the case of Carfilomib which despite giving 6 alerts –  4 of which were confirmed and 2 were 
not assessed (as detailed in the supplementary information) –  has been accepted as a treatment for cancer 
when other treatments are unsuccessful . 

 

(a) 

 

(b) 

Figure 3 Results of predictions from the Derek Nexus module for StarDrop on the 24 compounds approved by the US 
Food and Drug Administration in 2012. (a) shows the analysis on a per-compound basis and (b) shows the analysis on a 
per-endpoint basis. 

                                                                 
3 http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203858s002lbl.pdf 
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Figure 4 These ‘chemical space’ plots illustrate how predictions of the potential to cause toxicity can be combined with 
other experimental and predicted data to guide the selection of lead series in early drug discovery. Each point in a 
chemical space represents a single compound and the proximity of points indicates their structural similarity (2D path-
based similarity calculated by a Tanimoto index [29]). (a) shows the compounds in a library of compounds with COX2 
inhibition data containing 5 clusters of similar compounds, coloured by compound score from red (low) to yellow (high). 
The score was calculated using the profile shown in Error! Reference source not found.(a), taking into account only 
potency and ADME properties. From this it can be seen that multiple clusters contain compounds with high-scoring 
compounds. For reference, the point corresponding to Celecoxib is identified. (b) shows the points coloured by predicted 
likelihood of hepatotoxicity, from which it can be seen that many regions of chemistry are predicted to have increased 
likelihood of exhibiting hepatotoxicity. The point corresponding to Lumiracoxib, a known hepatotoxin, is highlighted in 
this plot. In (c), this information is combined with the data for compound potency, predicted ADME properties and 
predictions for  mutagenicity and genotoxicity using the scoring profile shown in Error! Reference source not found.(b). 
The colours indicate low scoring compounds in red and high scoring compounds in yellow and the cluster containing the 
majority of high scoring compounds is circled. 

Application in Early Drug Discovery 
To illustrate one workflow for the practical application of these methods in the context of a hit-to-lead project, 
we have used a public domain data set, derived from the ChEMBL database

4
. This data set contains 152 

compounds from multiple chemical series for which the inhibition of the Cyclooxygenase 2 (COX2) enzyme has 
been determined experimentally, including the drugs Celecoxib and Lumiracoxib. This is typical of a data set 
containing primary screening data in a hit-to-lead project targeting a fast-follower for an existing drug. 

Figure 4(a) shows the ‘chemical space’ of this library, in which the colour of a point represents the score of 
each compound against the scoring profile shown in Figure 1(a), including the experimentally measured target 
inhibition and a range of predicted ADME properties, but not considering predicted toxicity. This illustrates the 
distribution of the compound scores across the chemical diversity of the library and indicates that there are 
three clusters of similar compounds that are likely to yield compounds with a good balance of potency and 
ADME properties. These high-scoring compounds include the drugs Celecoxib and Lumiracoxib. 

The potential for these compounds to cause toxicities were then predicted using the Derek Nexus module for 
StarDrop for endpoints including mutagenicity, hepatotoxicity and genotoxicity. (Mutagens cause heritable 
changes to DNA whereas genotoxins damage a cell’s genetic material but do not necessarily cause permanent 
damage to DNA sequences). Figure 4(b) shows the prediction of hepatotoxicity mapped onto the chemical 
space of the COX2 library, which clearly shows that several of the clusters have plausible evidence of 
hepatotoxicity and should be considered with care. Among those compounds with evidence of hepatotoxicity 
is Lumiracoxib, which was withdrawn from the market in several countries, mostly due to hepatotoxicity 
concerns, and has never been approved for use in the United States. 

The toxicity predictions can be combined with the in vitro and in silico data for other properties in an overall 
scoring profile, shown in Figure 1(b), giving appropriate weight to the predictions of toxicity against the other 
factors. The resulting scores are plotted in the chemical space shown in Figure 4(c), in which one cluster clearly 
stands out as having several compounds with the highest likelihood of yielding a high quality lead series with 
good ADME properties and reduced chance of toxicity. 

                                                                 
4 https://www.ebi.ac.uk/chembl/ 
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It is noteworthy that Celecoxib (the gold-standard COX2 inhibitor) [30] is also identified as having plausible 
evidence of toxicity, illustrating the importance of balancing the potential for toxicity against the benefits. One 
advantage of avoiding hard filters, by using a weighted scoring profile and taking into account the uncertainty 
in the underlying data, is that the series including Celecoxib and Lumiracoxib would not be rejected outright. 

For example, the score for Celecoxib (0.150.08) is not statistically significantly different from the top-scoring 

compound (0.450.30). This indicates that a rigorous strategy should select a small number of compounds 
from this series in order to experimentally confirm the required properties before making a final choice of lead 
series. 

Finally, considering the structure of Lumiracoxib in Figure 2, a single functionality is highlighted as the cause of 
the structural alert for increased hazard of hepatotoxicity, in common with all other members of this series. 
This suggests that approaches for reducing the associated risk, while retaining potency and other desirable 
properties, can be investigated at an early stage before rejecting this class of compounds. 

Conclusions 
A key strategy to reduce the long timelines and spiralling cost of pharmaceutical R&D is to target safe and 
efficacious compounds as early as possible in the drug discovery process. Taking all available information into 
account, from predictive and experimental sources, as early as possible, increases the likelihood of delivering a 
high quality lead and, ultimately, a development candidate with an improved chance of success in the clinic. 
Furthermore, a lead series with a good balance of properties is less likely to require many, long and costly lead 
optimisation cycles; an important factor identified to reduce the overall cost per marketed drug [2]. 

Knowledge-based prediction of toxicity has an important role to play in this process, guiding the selection and 
optimisation of compounds when in vitro and in vivo toxicity data is often not available, due to the high cost 
and long timescales of experimental measurements. However, as with any predictive method, the 
uncertainties in the predicted outcomes should be taken into account and appropriate weight should be given 
to these results, relative to other property requirements for a high quality compound for a drug discovery 
project’s objective. In this article, we have illustrated how toxicity predictions can be incorporated into an 
MPO approach to quickly identify compounds with an appropriate balance of properties and guide the 
optimisation of compounds with potential liabilities. 
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