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Abstract 

Using in silico predictive models and multi-parameter optimisation techniques allows large numbers 

of compounds to be quickly assessed with respect to a profile of properties required for a successful 

compound in a drug discovery project. With these predictive methods, it becomes possible to 

consider a large number of ideas for potential compounds that can be easily created and entered 

into a computer by an individual. In this article we describe a method that automatically generates 

chemically relevant compound ideas from an initial molecule, based on medicinal chemistry 

‘transformation rules’ taken from examples in the literature. These are then prioritised using in silico 

models and a probabilistic scoring algorithm to identify the compound ideas most likely to satisfy a 

user-defined profile of required properties. Embedded in an intuitive, visual user interface, this 

approach provides a powerful means to explore potential chemistry to identify high quality leads or 

to improve properties in lead optimisation. We demonstrate that the set of 206 transformations 

employed is generally applicable, produces a wide range of new compounds and is representative of 

the types of modifications previously made to move from lead-like to drug-like compounds. 

Furthermore, we show that more than 94% of the compounds generated by transformation of 

typical drug-like molecules are acceptable to experienced medicinal chemists. Finally, we illustrate 

an application of our approach to the lead that ultimately led to the discovery of Duloxetine, a 

marketed serotonin reuptake inhibitor. Our analysis results in the identification of a diverse range of 

high scoring compounds, including Duloxetine itself. 

Introduction 

In silico predictive models of key properties are routinely used in the selection and design of 

potential drug molecules (1). These results may be combined to prioritise compound ideas for 

synthesis, simultaneously optimising multiple parameters to identify compounds with an 

appropriate balance of properties for the therapeutic goal of a drug discovery project (2)(3). 

Furthermore, the structure-activity relationships that these models capture can guide the redesign 

of compounds to improve their properties and overcome liabilities (4). 

Predictive methods can score and rank compounds to guide the search for high quality compounds 

among a large number of possibilities; therefore, getting the maximum value depends on having a 

rich set of potential compounds to search. However, during optimisation it is rare for a large library 

of relevant, predefined structures to be available and it is common to rely on a medicinal chemist to 

define possible compounds of interest, either by drawing individual structures or enumerating 



virtual libraries based on a common structural motif. This is a time consuming process and limited by 

the experience of an individual chemist; how many ideas can one person generate? 

Methods for automatically applying medicinal chemistry ‘transformation rules’ to generate new 

compound structures have been previously described (5)(6).  These typically accept an initial ‘parent’ 

structure as input and generate ‘child’ structures by applying transformations based on collective 

medicinal chemistry experience. Examples of transformation rules range from simple substitutions 

or bioisostere replacements to more dramatic modifications of the molecular framework such as 

ring opening or closing. A computer can store and apply many more rules than a single chemist and 

can ‘learn’ from historical examples of transformations between molecules (7). Applying a set of  

transformations iteratively to produce multiple ‘generations’ of compound ideas can result in a large 

number of molecules – too many to be examined visually by a chemist to select the most interesting 

for further consideration. 

In this paper, we describe the combination of an algorithm to generate compound ideas, by applying 

transformations to an initial molecule, with predictive models and a multi-parameter scoring 

algorithm to quickly focus attention on those ideas most likely to satisfy the required property 

profile. The goal is a tool to support experts and stimulate the process of innovation – achieving a 

creative combination of a computer’s ability to cover a wide breadth of possibilities with the 

experience and detailed knowledge of a chemist. In particular, the discovery process should be 

directed by an expert and provide a prioritised list of possibilities for further consideration, not an 

automatically designed final compound. 

To be successful, such a method must satisfy a number of requirements:  

• It must generate a wide diversity of chemistry, as the objective is to explore many ideas in 

the search for an optimal solution. 

• The compound structures generated must be relevant. In particular, the number of 

‘nonsensical’, e.g. chemically unstable or infeasible, compounds must be kept to a minimum. 

Also, the chemist must be able to control the generation process, for example by specifying 

a region that must not be modified or restricting the transformations that will be applied. 

• The transformations that are applied should include a broadly representative set of those 

applied successfully in the past to optimise successful drugs. 

• The method used to prioritise the resulting compound ideas should reliably identify high 

quality compounds within those given the highest rank in the generated set. 

In the following sections, we will describe the methods used to create and apply a set of 

transformations and prioritise the compounds generated thereby. Furthermore, we will describe the 

validation of this method to ensure that the transformations cover a broad range of ‘drug like’ 

chemistry and that the resulting structures are relevant and not unstable or infeasible. Finally, we 

will describe the application of our method to efficiently identify compounds similar to known drugs, 

starting from the lead compounds from which the drugs were derived. Although retrospective, this 

application will demonstrate the ability to efficiently target high quality compounds. 

 

 



Methods 

Transformations 

Two hundred and six transformations were generated manually, as SMIRKS codes, by study of 

medicinal chemistry literature (8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24) and 

observation of the optimisation steps between known drugs and the lead molecules from which they 

were derived. SMIRKS is a reaction transform language designed by Daylight Chemical Information 

Systems which uses SMILES and SMARTS notations to specify a generic reaction or transformation 

(25). 

The transformations were divided into seven broad groups: Functional Group Addition, Linker 

Modification, Remove Atom, Ring Addition, Ring Modification, Ring Removal, Terminal Group 

Exchange. The distribution of transformations between the groups is shown in Table 1and examples 

of each are shown in Table 2. 

Table 1 Distribution of transformation between groups. 

Group Number of 

transformations 

Functional Group Addition 20 

Linker Modification 54 

Remove Atom 5 

Ring Addition 13 

Ring Modification 26 

Ring Removal 4 

Terminal Group Exchange 84 

Total 206 

 

The transformations do not necessarily correspond to specific chemical reactions or synthetic 

routes; rather they are intended to describe changes to molecules that a medicinal chemist might 

consider in the course of an optimisation project. A single transformation might require multiple 

synthetic steps or the synthesis of new building blocks. However, the transformations are typically 

not major rearrangements – they are relatively feasible moves in chemical space.



 

Table 2 Example Transformation Rules. 

Group Transformation 

Name 

Illustration SMIRKS 

Functional 

Group 

Addition 

Methyl addition to 

amine 

 

[N:1][H]>>[N:1]C 

Sulfonamide 

addition to benzene 

 

[c:1]1[c:2][c:3][c:4][c:5][c:6]1[H]>>[c:1]1[c:2][c:3][c:4][c:5][c:6]1S(N)(=

O)=O 

Linker 

Modification 

Secondary carbon 

to carbonyl 

 

[*;!#1:1][CH2][*;!#1:2]>>[*;!#1:1]C(=O)[*;!#1:2] 

Ester to amide 

linker 

 

[#6:1]O[C;!R:3](=O)[#6:2]>>[#6:1]N[C;!R:3](=O)[#6:2] 

Remove 

Atom 

Remove halogen 

 

[C,c:1][F,Cl,Br,I]>>[C,c:1] 

Remove hydroxyl 

 

[C,c:1][OH]>>[C,c:1] 

Ring Addition 

Methyl to phenyl 

 

[*;!#1:1][CH3]>>[*!#1:1]c1ccccc1 

Benzene to indole 

 

[c:1]([H])1[c:2]([H])[a:3][a:4][a:5][a:6]1>>[C:1]12[a:6]=[a:5][a:4]=[a:3][

C:2]=1[nH]C=C2 



Ring 

Modification 

Phenyl to 3-pyridine 

 

[*;!#1:1][c:2]1[c:3][c:4][c:5][cH][c:6]1>>[*;!#1:1][c:2]1[c:3][c:4][c:5][n]

[c:6]1 

 

NC-switch 

 

[*:1]1:[c]([*:2]):[c:10]([*:3]):[n]([*:4]):[*:5]1>>[*:1]1:[n]([*:2]):[c:10]([

*:3]):[c]([*:4 

Ring Removal 

Napthalene to 

benzene 

 

[*;!#1:7][c:1]1[cH]c2c([cH][c:6]1)[c:5][c:4][c:3][c:2]2>>[*;!#1:7][c:1]1[c

:2][c:3][c:4][c:5][c:6]1 

Remove phenyl 

 

[*;!#1:1]c1[cH][cH][cH][cH][cH]1>>[*;!#1:1] 

Terminal 

Group 

Exchange 

Carboxyl to amide 

 

[*;!#1:1][C:2](=O)[OH]>>[*;!#1:1][C:2](=O)N 

Amide to 

sulfonamide 

 

C(=O)([NH2])[*;!#1:1]>>S(=O)(=O)([NH2])[*;!#1:1] 



Generation of Compound Structures 

The Cactvs cheminformatics library (26)was used within the StarDrop software platform (27) to 

apply the transformations, encoded as SMIRKS, to a parent compound structure encoded as a 

SMILES string. The Cactvs implementation also allows a fragment of the parent to be specified as a 

SMARTS pattern, such that this fragment will not be modified during the generation process and any 

transformations that would modify this region will be ignored. 

The user can specify the parent structure and control the generation process through a graphical 

user interface implemented in the StarDrop software platform. The typical workflow is illustrated in 

Figure 1: The user can specify a region of the compound that must not be modified; the 

transformations to be applied can be selected; the number of generations of transformations to be 

applied can be specified; and finally, because this process generates a number of compounds that 

grows exponentially with the number of generations, the user can control this growth by specifying a 

property criterion to select a subset of the compounds in each generation. The criterion may be 

defined in terms of any predicted property or a score that represents the overall quality with respect 

to a profile of properties (see “Scoring” below) and can be specified as a threshold value for the 

property, e.g. only accept compounds with logS > 1, or the number or proportion of compounds to 

select from a list ranked by the property, e.g. only progress the 100 most potent compounds in a 

generation or the highest scoring 10% of a generation. 

   
(a) (b) (c) 

Figure 1 Illustration of workflow to initiate the generation of new compound structures. (a) Specify the input structure. 

A region of the molecule can be chosen to be 'frozen' (shown in light blue), in which case no modifications will be made 

to this region. (b) The transformations to apply can be selected, either individually or as groups. The groups can be 

managed to create groups tailored to specific objectives or to add new transformations. (c) The number of generations 

can be specified and a criterion for selection can be defined to limit the growth of the number of compounds generated. 

The selection can be defined as a minimum threshold for a property or score or a maximum number or percentage of 

each generation that will be used as the basis for subsequent generations. 

Predictive Models 

In principle, any in silico model may be used to predict the properties of the compounds generated. 

However, due to the large number of compounds that may be generated, the models should be 

capable of generating predictions quickly in order to prevent the process from becoming intractable. 

In the examples presented in this paper, quantitative structure-activity relationship (QSAR) models 

implemented in the StarDrop software platform (27) were used to predict the following absorption, 

distribution, metabolism and elimination (ADME) and physicochemical properties: octanol/water 

partition coefficient (logP), aqueous solubility (logS), human intestinal absorption (HIA),  blood-brain 

barrier penetration (logBB), inhibition of the potassium ion channel encoded by the human ether-a-



go-go related gene (hERG pIC50), human plasma protein binding (PPB), inhibition of cytochrome P450 

isoforms CYP2D6 and CYP2C9 (pKi) and active transport by P-glycoprotein (P-gp). 

In order to identify high quality compounds it is also necessary to predict activity against the 

pharmacological target for the intended drug. In the example application described herein, a QSAR 

models of target potency (expressed as the logarithm of the Ki in nM) was generated using the Auto-

Modeller implemented in StarDrop (28) using a Gaussian Processes method (29). The data set used 

to build this model was derived from the ChEMBL database provided by the European Bioinformatics 

Institute (30). The resulting model has an R
2
 of 0.81 and a root mean square error of 0.76 on an 

independent test set of 311 compounds. 

Scoring 

The methods underlying the probabilistic scoring algorithm employed herein are discussed in more 

detail in (3)(4) but here will give a brief overview. A probabilistic score is one which indicates the 

probability of success of a molecule against a ‘scoring profile’ that defines criteria for the properties 

that are required in an ideal compound. It is also important to specify the relative importance of the 

criteria as, in practice, it is often necessary to make a trade-off between properties if an ideal 

molecule cannot be identified. Furthermore, more subtle trade-offs can be defined than simple 

pass/fail criteria, as a scoring profile could contain more complex functions for each property 

representing a range of acceptability over the property value range.  An example of such a scoring 

profile is shown in Figure 2. 

Figure 2 A 'scoring profile' showing the 

properties of interest, the project's success 

criteria and the importance of each to the 

project’s objective. The inset window shows how 

more subtle trade-offs than simple pass/fail 

criteria can be defined, in this case a range of 

values over which the property value goes from 

ideal to unacceptable. 

 

 

 

 

When combining property data on multiple properties, it is also important to consider the 

uncertainty in each data point, as this could lead to the overall uncertainty in the scores being high, 

reducing our ability to confidently distinguish high and low quality molecules. The result of this 

process is a score for each molecule, representing the likelihood of a molecule meeting the scoring 

criteria and an uncertainty in the overall score, derived from the uncertainties in each of the 

individual property values. These uncertainties can be used to establish whether the available data 

allow one molecule to be confidently chosen over another. An illustration of the output for a small 

set of molecules is shown in Figure 3. 



 

Figure 3 In this graph, molecules are plotted along the x-axis in rank order. The score is plotted on the y-axis, with error 

bars indicating the overall uncertainty in the score. Here the top 5 compounds cannot be confidently distinguished; 

more data or further criteria are required to choose between these. However, ~50% of compounds are significantly less 

likely to meet the project criteria than the top 5. 

Visualisation 

Due to the large number of compounds and volume of associated data that this process can 

generate, it is important to provide visual tools to guide the exploration of the rich data set 

generated. In addition to typical scatter plots and histograms it can be valuable to explore the 

parent-child relationships between generated molecules to identify transformations that have a 

large impact on predicted properties. An example of such a visualisation is shown in Figure 4. 

Figure 4 A view of the relationships between compounds in a 

dataset generated by the algorithm. The currently selected 

compound is shown in the middle, the parent compounds from 

which it was generated by different transformations are shown 

above and child compounds are shown below. The network of 

related compounds can be navigated by selecting compounds above 

or below the current compound. The value of a property, in this case 

logS, is shown with each compound allowing transformations that 

give rise to large changes in the property to be easily identified. 

 

 

 

 

It may also be useful to visualise the diversity of the compounds generated and trends in properties 

and scores across this diversity. An example of such a ‘chemical space’ is shown in Figure 5. 

 



 

Figure 5 An example of a ‘chemical space’ visualisation. In this plot, each point represents a compound and the distance 

between two points indicates their structural similarity; close points are structurally similar while distant points are 

structurally diverse. The colour scale shows the distribution of a property or score. In this case the best compounds are 

shown in yellow and the worst in red, indicating a ‘hot spot’ in the top right where the best compounds are 

concentrated. 

Transform Set Validation 

Coverage 

In order to ensure that the set of transformations covers a wide range of ‘drug-like’ chemistry, 

enabling the exploration of a diverse range of potential modifications, each transformation should 

apply to a wide range of molecules; a transformation that uniquely applies to a single molecule is not 

of interest. Furthermore, when the full set of transformations is applied to a ‘typical’ drug-like 

parent molecule, a large number of child molecules should be generated. 

To test these requirements, the 206 transformations were applied to a set of 3,211 drug molecules 

(the “drug” set) derived as follows: Version 2.5 of the DrugBank Small Molecule database (31) was 

obtained on August 23, 2010. This initial set containing 4854 molecules was reduced by removing 

molecules containing atoms other than C, H, N, O, P, S, Cl, or F, molecules with molecular weight less 

than 200 Da and 140 molecules which contained poorly specified SMILES (127 aromaticity errors and 

13 valence errors), resulting in 3214 compounds. Finally, 3 additional molecules (insulin, inulin and 

DB05413) were removed, as these are very large, not representative of the compounds to which we 

expect this method to be applied and likely to skew the validation statistics due to their size. 40 

compounds were slightly edited to remove small cofactors or counter-ions or to select only one 

isomer where multiple isomers were specified. 

The 206 transformations were applied to the drug set resulting in 584,124 child compounds; thus, on 

average, 182 child compounds were generated from each parent. Furthermore, on average, each 

transformation applied at least once to 31% of the molecules in the drug set. 

These statistics indicate that the set of transformations have broad applicability to drug-like 

compounds and will generate a wide range of child compounds. 



Quality 

As discussed above, the transformation rules should be sufficiently general. However, there is a 

trade-off in that a more general transform is more likely to apply in an occasionally inappropriate 

chemical context. This can generate undesirable or infeasible compound structures. The desirability 

of compound structures is, to some extent, subjective. Therefore, the quality of the compound 

structures generated was assessed by asking two independent medicinal chemists to examine a set 

of 1,500 compounds generated using the 206 transformations. 

The quality assessment set was generated as follows: 400 compounds were randomly selected from 

the drug set described above. All of the 206 transformations were applied to the 400 selected 

molecules to generate a set of child compounds. From the full set of child compounds, 1500 were 

selected at random for assessment by the medicinal chemists. 

The medicinal chemists were asked to assess each child compound to determine whether it was 

undesirable. They were not asked to determine if they could identify a synthetic route to the 

product – an ideal compound that was synthetically challenging may be worth the effort of devising 

a difficult synthetic route or may spark further ideas that are more accessible. 

From the same set of 1500 child compounds, one chemist flagged 7% of the structures as 

undesirable while the other flagged 4.1%. This demonstrates that desirability is, to some extent, 

subjective. However, an average acceptance rate of 94% was considered to be more than sufficient. 

It would be possible to filter out some of the undesirable structures before they are output. 

However, it was decided to retain this small proportion of poor compound structures as, though 

they may be a minor distraction, they may stimulate ideas for similar compounds that are chemically 

feasible. 

Hit-like to Drug-like Transformation Series 

The transformations in the set should be representative of those used in practice to optimise leads 

into drug molecules. To assess this, a data set containing 60 marketed drugs and the initial leads 

from which they were derived, published by Perola (32), was used (we will refer to these lead/drug 

pairs as the “Perola” set). 

For each lead/drug pair in the Perola set, the lead was used as the initial parent and the 206 

transformations were applied iteratively to explore the ‘universe’ of compounds that are accessible 

from the lead. The goal of this was to identify the closest compound structure in this universe to the 

corresponding drug. This is challenging, as many of the derivations of drugs in the Perola set from 

their corresponding leads include the exchange or incorporation of large or relatively uncommon 

fragments. A result of the coverage requirements described above is that most of the transforms 

involve smaller fragments. Therefore, many iterative applications of the transformations may be 

required, creating many generations of child compounds, to move from a lead to a compound 

similar to the corresponding drug and, even then, it may not be possible to find an exact match to 

the drug. 

As the number of compounds generated increases exponentially with the number of generations, it 

is impractical to exhaustively enumerate all offspring compound structures. For example, if 182 



compounds are generated on average from a single parent, the third generation will contain more 

than 6 million compounds. Therefore, a ‘beam’ search was implemented, whereby the 100 

compounds with the greatest similarity to the target drug were retained after each iteration and a 

total of five iterations were applied. The closest match to the corresponding drug was identified 

from the resulting child compounds. The disadvantage of this approach is that it does not guarantee 

to find the closest match that could be achieved, as it may be necessary to initially move away from 

the drug in order to ultimately generate the most similar compound. Furthermore, it may be 

possible to find a closer child compound if more than five iterations were applied. 

Similarity was measured using the Tanimoto index calculated between topological path-based 

fingerprints, with a maximum path length of 7 and a fingerprint size of 2048 bits. This was performed 

using the RDKit toolkit (33). 

Out of the 60 Perola lead/drug pairs, 7 exact matches were achieved within the compounds 

generated from the initial lead. On average, the similarity of the drug with closest match in the child 

compounds generated from the corresponding lead was 0.85 compared with an average similarity 

between the drugs and leads of 0.64. The structures of the initial leads, corresponding drugs and 

closest identified child compounds are provided in the Supporting Information. This demonstrates 

that the transformations are representative of those used to move from lead-like to drug-like 

compounds. 

Example Application 

To illustrate the application of the transformation set to guide the search for optimised compounds 

based on an initial lead, we used the lead molecule that ultimately gave rise to the drug Duloxetine 

as the parent molecule. 

The ADME QSAR models described above and a model of the inhibitory constant Ki for the serotonin 

transporter were used to prioritise the compounds generated against the scoring profile shown in 

Figure 6, which combines potency against the primary target with suitable ADME properties for an 

orally dosed compound against a CNS target. 

 

Figure 6 The scoring profile used to prioritise compounds generated from the Duloxetine lead, showing the properties of 

interest, the desired value ranges and the importance of each criterion. For example, the most important property was 

inhibition of the serotonin transporter, for which a predicted Ki of less than 10 nM (log Ki <1) was required. This was 

followed by an aqueous solubility of greater than 10 µµµµM (logS > 1) and positive prediction for human intestinal 

absorption.  

  



The application of one generation 

suggested that exhaustive enumeration of more than two generations would be intractable. 

Therefore, three generations were applied, but only the top

of generations 1 and 2 were used as the basis for subsequent generations.

The resulting data set contained 2,208 compounds (all of the compounds in the final generation 

were retained) and the scores for these compounds are plotted in

observations may be made: The compounds in each generation typically show a

over the previous generation; the score for the initial lead is 0.09 and the

compounds in subsequent generations are 0.32, 0.44 and 0.53 respectively (note that only the top 

10% of the first two generations are included)

predictions are combined to calculate the sco

the error bars in Figure 7. Therefore

confidence, particularly in the later generations. Finally, it is notable that Duloxetine itself is present 

in the final generation, with a score that is significantly higher than the initial lead 

significance ~0.1) and not significantly below that of the highes

 

 

Figure 7 This graph shows the compounds generated by three generations of transformations starting with the lead 

compound for the project that yielded the drug Duloxetine.

compound due to the uncertainties in the underlying data. 

basis for subsequent generations. The compounds are coloured by generation: Red

light blue generation 2 and dark blue generation 3. The drug Duloxetine was present in generation 3 and is shown by the 

green diamond. 

 

 

The application of one generation of transformations produced 172 child compounds, which 

suggested that exhaustive enumeration of more than two generations would be intractable. 

Therefore, three generations were applied, but only the top-scoring 10% of the compounds in 

1 and 2 were used as the basis for subsequent generations. 

The resulting data set contained 2,208 compounds (all of the compounds in the final generation 

were retained) and the scores for these compounds are plotted in Figure 7. From this, a number of 

observations may be made: The compounds in each generation typically show an increase in score 

the score for the initial lead is 0.09 and the averages for the 

compounds in subsequent generations are 0.32, 0.44 and 0.53 respectively (note that only the top 

10% of the first two generations are included). However, as the results from multiple uncertain 

predictions are combined to calculate the score, the uncertainties in the score are high, as shown by 

. Therefore, it is difficult to discriminate between compounds with 

icularly in the later generations. Finally, it is notable that Duloxetine itself is present 

in the final generation, with a score that is significantly higher than the initial lead 

and not significantly below that of the highest scoring compounds.

This graph shows the compounds generated by three generations of transformations starting with the lead 

compound for the project that yielded the drug Duloxetine. Error bars show the uncertainty of the overall score for each 

compound due to the uncertainties in the underlying data. Only the top 10% of generations 1 and 2 were used as the 

basis for subsequent generations. The compounds are coloured by generation: Red is the parent, yellow generation 1, 

light blue generation 2 and dark blue generation 3. The drug Duloxetine was present in generation 3 and is shown by the 
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The structures and scores of the initial lead and Duloxetine are shown in Figure 8 along with the 

three highest ranking molecules generated. Although none of the top-three compounds could be 

identified in a search of PubChem (34), the second-ranked compound bears a strong similarity 

(Tanimoto similarity >0.9) to Litoxetine, shown in Figure 9, which was progressed to clinical trials and 

is active against the serotonin transporter with an IC50 of 6 nM (35).  

Rank 1 

 

Rank 2 

 

Rank 3 

 

Duloxetine 

 

Initial lead 

 
 

Figure 8 The initial lead that ultimately gave rise to Duloxetine, the top three compounds generated from this lead and 

Duloxetine, which was also generated by the algorithm. The score for each compound is show to the right along with a 

histogram indicating the contribution of each property to the overall score (the colour of each bar corresponds to the 

property key shown in Figure 6). All of these compounds are predicted to have good values for the predicted ADME 

properties. However, the initial lead has a much lower score due to a significantly poorer Ki predicted for the serotonin 

transporter. 

 

 

Figure 9 The structure and calculated score for Litoxetine, a clinical candidate serotonin reuptake inhibitor. The 

predicted Ki for this compound is 10 nM, in line with the reported IC50 of 6 nM. Although this structure was not 

generated automatically in this example, it bears a strong similarity (Tanimoto similarity >0.9) with the second-ranked 

compound, which has a higher predicted affinity and hence a higher score. 

  



The chemical space of the data set generated is shown in Figure 10. From this it is notable that a 

wide range of different chemical motifs have been explored and that there are multiple ‘hot spots’ 

containing high-scoring compounds; the best scoring compounds are not concentrated in one 

region, indicating that the algorithm has identified a number of different chemical strategies worthy 

of further consideration. The top three ranked molecules are structurally diverse, within the range of 

diversity explored around the initial lead, and are distinct from both the initial lead and Duloxetine 

itself. 

 

Figure 10 The chemical space of compounds generated from the initial lead that gave rise to Duloxetine. The points 

corresponding to compounds are coloured by score, from the lowest (0.29) in red to the highest (0.69) in yellow. The 

initial lead is shown as a dark blue diamond, Duloxetine as a light blue diamond. The top-three scoring compounds are 

shown as green diamonds. 

In this example, the increase in score is driven primarily by the improvements in predicted target 

affinity between generations because the predicted ADME properties of the lead compound were 

good to begin with. However, the use of probabilistic scoring to select compounds with a good 

balance of properties was valuable as it eliminated compounds in early generations that were 

predicted to have high target affinity but were unlikely to have a good balance of ADME properties 

for the overall objective. Figure 11 shows the distribution of the scores for compounds in the first 

two generation with predicted Ki less than 10 nM, indicating that a significant number of compounds 

that were predicted to be active were rejected due to the predictions of poor values of other 

properties including solubility (184 compounds from generation 2 were used as the progenitors of 

generation 3).  

 

 

 



Figure 11 Score distribution for the compounds in 

generations 1 and 2 from the Duloxetine lead compound 

with a predicted Ki of less than 10 nM. From this we can see 

that there are a significant number of compounds with poor 

scores, despite having high target affinity, indicating that 

they are likely to have poor values for other relevant 

properties. 

 

 

 

 

 

Conclusions 

In this paper we have described an algorithm for automatically generating new compound ideas 

from an initial molecule using a set of medicinal chemistry transformations derived from the 

literature. We have shown that these transformations are generally applicable and generate 

structures that are relevant and acceptable to medicinal chemists. Furthermore, we have 

demonstrated the use of this chemical transformation algorithm coupled with predictive models and 

a multi-parameter optimisation method, integrated in an intuitive visual environment, to stimulate 

the exploration of a wide range of strategies to identify compounds with a good balance of 

properties and hence a high chance of downstream success. 

There are a wide range of potential applications of this technology. These include: aiding the 

rigorous exploration of chemistry around early hits, to identify those hits most likely to yield high 

quality lead series; helping to find strategies to overcome problems with compound properties in 

lead optimisation; and identifying patent busting opportunities by expanding the chemistry around 

existing development candidates or drugs to search for compounds with improved properties.  

Finally, while we have focussed on the creation and validation of an initial set of transformations, it 

is possible to extend this set with new transformations based on the experience of medicinal 

chemists or designed around specific chemistry available within an organisation. Furthermore, it 

may be beneficial to organise transformations into groups, perhaps tailored to specific objectives 

such as improving metabolic stability or reducing plasma protein binding. Thus, this approach could 

be used as a tool to capture and share knowledge between medicinal chemists or even as an 

educational resource for less experienced scientists. 
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Supporting Information 

Table of initial leads, marketed drugs and closest child compounds generated in 5 generations for Perola Set 

Drug Name Initial Lead Structure Drug Structure Closest Child Generated 
Lead-Drug 
Similarity 

Child-Drug 
Similarity 

ALISKIREN 

   

0.711 0.985 

ALVIMOPAN 

   

0.744 0.937 

AMBRISENTAN 

   

0.659 0.931 



AMPRENAVIR 

   

0.621 0.737 

APREPITANT 

   

0.530 0.720 

ARGATROBAN 

   

0.540 0.862 

ATAZANAVIR 

   

0.755 0.842 



ATORVASTATIN 

   

0.644 0.925 

BENAZEPRILAT 

   

0.468 0.786 

BEXAROTENE 

   

0.743 0.911 

BOSENTAN 

   

0.724 0.825 



CAPTOPRIL 

   

0.791 1.000 

CELECOXIB 

   

0.905 0.967 

CONIVAPTAN 

   

0.643 0.851 

DABIGATRAN 

   

0.639 0.794 



DASATINIB 

   

0.624 0.793 

DELAVIRDINE 

   

0.650 0.911 

DONEPEZIL 

   

0.493 0.920 

DULOXETINE 

   

0.497 1.000 



DUTASTERIDE 

   

0.549 0.838 

ENALAPRILAT 

   

0.787 0.921 

EPROSARTAN 

   

0.659 0.821 

ETRAVIRINE 

   

0.473 0.660 



FADROZOLE 

   

0.488 1.000 

FOSINOPRILAT 

   

0.878 1.000 

GEFITINIB 

   

0.651 0.952 

IMATINIB 

   

0.650 0.786 



INDINAVIR 

   

0.675 0.839 

LAPATINIB 

   

0.674 0.833 

LAROPIPRANT 

   

0.893 0.938 

LOSARTAN 

   

0.733 0.866 



MARAVIROC 

   

0.604 0.729 

MONTELUKAST 

   

0.461 0.732 

NELFINAVIR 

   

0.676 0.768 

NEVIRAPINE 

   

0.823 0.990 



OLOPATADINE 

   

0.634 0.846 

OSELTAMIVIR 
CARBOXYLATE 

   

0.835 1.000 

PALONOSETRON 

   

0.631 0.771 

RALTEGRAVIR 

   

0.682 0.859 



RAMELTEON 

   

0.416 0.645 

RITONAVIR 

   

0.714 0.884 

RIVAROXABAN 

   

0.619 0.688 

SAQUINAVIR 

   

0.614 0.807 



SILDENAFIL 

   

0.653 0.882 

SITAGLIPTIN 

   

0.402 0.709 

SITAXENTAN 

   

0.570 0.842 

SIVELESTAT 

   

0.380 0.651 



SOLIFENACIN 

   

0.446 0.795 

SORAFENIB 

   

0.479 0.634 

SUNITINIB 

   

0.721 0.957 

TADALAFIL 

   

0.502 0.919 



TELMISARTAN 

   

0.718 0.845 

TERBINAFINE 

   

0.757 1.000 

TIPRANAVIR 

   

0.601 0.879 

TIROFIBAN 

   

0.528 0.883 



TOPOTECAN 

   

0.985 1.000 

VARENICLINE 

   

0.455 0.604 

VILDAGLIPTIN 

   

0.592 0.970 

ZAFIRLUKAST 

   

0.373 0.838 



ZANAMIVIR 

   

0.797 0.908 

Average    0.636 0.853 
 


